287 resultados para Construction process improvement
Resumo:
Business process models have become an effective way of examining business practices to identify areas for improvement. While common information gathering approaches are generally efficacious, they can be quite time consuming and have the risk of developing inaccuracies when information is forgotten or incorrectly interpreted by analysts. In this study, the potential of a role-playing approach to process elicitation and specification has been examined. This method allows stakeholders to enter a virtual world and role-play actions similarly to how they would in reality. As actions are completed, a model is automatically developed, removing the need for stakeholders to learn and understand a modelling grammar. An empirical investigation comparing both the modelling outputs and participant behaviour of this virtual world role-play elicitor with an S-BPM process modelling tool found that while the modelling approaches of the two groups varied greatly, the virtual world elicitor may not only improve both the number of individual process task steps remembered and the correctness of task ordering, but also provide a reduction in the time required for stakeholders to model a process view.
Resumo:
This paper addresses the problem of discovering business process models from event logs. Existing approaches to this problem strike various tradeoffs between accuracy and understandability of the discovered models. With respect to the second criterion, empirical studies have shown that block-structured process models are generally more understandable and less error-prone than unstructured ones. Accordingly, several automated process discovery methods generate block-structured models by construction. These approaches however intertwine the concern of producing accurate models with that of ensuring their structuredness, sometimes sacrificing the former to ensure the latter. In this paper we propose an alternative approach that separates these two concerns. Instead of directly discovering a structured process model, we first apply a well-known heuristic technique that discovers more accurate but sometimes unstructured (and even unsound) process models, and then transform the resulting model into a structured one. An experimental evaluation shows that our “discover and structure” approach outperforms traditional “discover structured” approaches with respect to a range of accuracy and complexity measures.