699 resultados para 030299 Inorganic Chemistry not elsewhere classified
Resumo:
Optimisation of Organic Rankine Cycles (ORCs) for binary cycle applications could play a major role in determining the competitiveness of low to moderate renewable sources. An important aspect of the optimisation is to maximise the turbine output power for a given resource. This requires careful attention to the turbine design notably through numerical simulations. Challenges in the numerical modelling of radial-inflow turbines using high-density working fluids still need to be addressed in order to improve the turbine design and better optimise ORCs. This paper presents preliminary 3D numerical simulations of a radial-inflow turbine working with high-density fluids in realistic geothermal ORCs. Following extensive investigation of the operating conditions and thermodynamic cycle analysis, the refrigerant R143a is chosen as the high-density working fluid. The 1D design of the candidate radial-inflow turbine is presented in details. Furthermore, commercially-available software Ansys-CFX is used to perform the 3D CFD simulations for a number of operating conditions including off-design conditions. The real-gas properties are obtained using the Peng-Robinson equations of state. The preliminary design created using dedicated radial-inflow turbine software Concepts-Rital is discussed and the 3D CFD results are presented and compared against the meanline analysis.
Resumo:
This paper describes the results of experiments made in the vicinity of EHV overhead lines to investigate sources of clouds of charged particles using simultaneously-recording arrays of electric field meters to measure direct electric fields produced under ion clouds. E-field measurements, made at one metre above ground level, are correlated with wind speed and direction, and with measurements from ionisation counters and audible corona effects to identify possible positions of sources of corona on adjacent power lines. Measurements made in dry conditions on EHV lines in flat remote locations with no adjacent buildings or large vegetation indicate the presence of discrete ion sources associated with high stress points on some types of line hardware such as connectors and conductor spacers. Faulty line components such as insulators and line fittings are also found to be a possible source of ion clouds.
Resumo:
Airborne particulate pollutant is considered to be one of the major harmful emissions produced by vehicle engines as it has been directly linked to serious health problems. Passengers spend long times at bus stations and may be exposed to high concentrations of pollution. Particle pollution at two bus stations in Brisbane, Australia were monitored. The two bus stations consisted of markedly different site geography and surroundings with one situated in a street canyon and the other elevated above ground level. The same flow of traffic operated through both stations. Real time measurements of ultrafine particle concentration, size distribution and meteorological conditions were carried out on the platform continuously over several days. The results showed that the particle number concentrations were significantly different at the two stations, suggesting that the layout of site geometry and surroundings was a dominant determining factor through the injection of fresh air into the station platforms and the rates of dilution.
Resumo:
Optimisation is a fundamental step in the turbine design process, especially in the development of non-classical designs of radial-inflow turbines working with high-density fluids in low-temperature Organic Rankine Cycles (ORCs). The present work discusses the simultaneous optimisation of the thermodynamic cycle and the one-dimensional design of radial-inflow turbines. In particular, the work describes the integration between a 1D meanline preliminary design code adapted to real gases and the performance estimation approach for radial-inflow turbines in an established ORC cycle analysis procedure. The optimisation approach is split in two distinct loops; the inner operates on the 1D design based on the parameters received from the outer loop, which optimises the thermodynamic cycle. The method uses parameters including brine flow rate, temperature and working fluid, shifting assumptions such as head and flow coefficients into the optimisation routine. The discussed design and optimisation method is then validated against published benchmark cases. Finally, using the same conditions, the coupled optimisation procedure is extended to the preliminary design of a radial-inflow turbine with R143a as working fluid in realistic geothermal conditions and compared against results from commercially-available software RITAL from Concepts-NREC.
Resumo:
This fact sheet outlines aspects of the nonprofit sector in Australia, under the following headings: size; economic contribution; employment; volunteering; income; expenses; and philanthropy; and provides international comparisons on aspects including size, growth, economic contribution, giving, and workforce.
Resumo:
The excellent multi-functional properties of carbon nanotube (CNT) and graphene have enabled them as appealing building blocks to construct 3D carbon-based nanomaterials or nanostructures. The recently reported graphene nanotube hybrid structure (GNHS) is one of the representatives of such nanostructures. This work investigated the relationships between the mechanical properties of the GNHS and its structure basing on large-scale molecular dynamics simulations. It is found that increasing the length of the constituent CNTs, the GNHS will have a higher Young’s modulus and yield strength. Whereas, no strong correlation is found between the number of graphene layers and Young’s modulus and yield strength, though more graphene layers intends to lead to a higher yield strain. In the meanwhile, the presences of multi-wall CNTs are found to greatly strengthen the hybrid structure. Generally, the hybrid structures exhibit a brittle behavior and the failure initiates from the connecting regions between CNT and graphene. More interestingly, affluent formations of monoatomic chains and rings are found at the fracture region. This study provides an in-depth understanding of the mechanical performance of the GNHSs while varying their structures, which will shed lights on the design and also the applications of the carbon-based nanostructures.
Resumo:
Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.
Resumo:
Organic compounds in Australian coal seam gas produced water (CSG water) are poorly understood despite their environmental contamination potential. In this study, the presence of some organic substances is identified from government-held CSG water-quality data from the Bowen and Surat Basins, Queensland. These records revealed the presence of polycyclic aromatic hydrocarbons (PAHs) in 27% of samples of CSG water from the Walloon Coal Measures at concentrations <1 µg/L, and it is likely these compounds leached from in situ coals. PAHs identified from wells include naphthalene, phenanthrene, chrysene and dibenz[a,h]anthracene. In addition, the likelihood of coal-derived organic compounds leaching to groundwater is assessed by undertaking toxicity leaching experiments using coal rank and water chemistry as variables. These tests suggest higher molecular weight PAHs (including benzo[a]pyrene) leach from higher rank coals, whereas lower molecular weight PAHs leach at greater concentrations from lower rank coal. Some of the identified organic compounds have carcinogenic or health risk potential, but they are unlikely to be acutely toxic at the observed concentrations which are almost negligible (largely due to the hydrophobicity of such compounds). Hence, this study will be useful to practitioners assessing CSG water related environmental and health risk.
Resumo:
This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.
Resumo:
Gross pollutant traps (GPT) are designed to capture and retain visible street waste, such as anthropogenic litter and organic matter. Blocked screens, low/high downstream tidal waters and flows operating above/below the intended design limits can hamper the operations of a stormwater GPT. Under these adverse operational conditions, a recently developed GPT was evaluated. Capture and retention experiments were conducted on a 50% scale model with partially and fully blocked screens, placed inside a hydraulic flume. Flows were established through the model via an upstream channel-inlet configuration. Floatable, partially buoyant, neutrally buoyant and sinkable spheres were released into the GPT and monitored at the outlet. These experiments were repeated with a pipe-inlet configured GPT. The key findings from the experiments were of practical significance to the design, operation and maintenance of GPTs. These involved an optimum range of screen blockages and a potentially improved inlet design for efficient gross pollutant capture/retention operations. For example, the outlet data showed that the capture and retention efficiency deteriorated rapidly when the screens were fully blocked. The low pressure drop across the retaining screens and the reduced inlet flow velocities were either insufficient to mobilise the gross pollutants, or the GPT became congested.
Resumo:
Graphyne is an allotrope of graphene. The mechanical properties of graphynes (α-, β-, γ- and 6,6,12-graphynes) under uniaxial tension deformation at different temperatures and strain rates are studied using molecular dynamics simulations. It is found that graphynes are more sensitive to temperature changes than graphene in terms of fracture strength and Young's modulus. The temperature sensitivity of the different graphynes is proportionally related to the percentage of acetylenic linkages in their structures, with the α-graphyne (having 100% of acetylenic linkages) being most sensitive to temperature. For the same graphyne, temperature exerts a more pronounced effect on the Young's modulus than fracture strength, which is different from that of graphene. The mechanical properties of graphynes are also sensitive to strain rate, in particular at higher temperatures.
Resumo:
The aim of this paper is to obtain the momentum transfer coefficient between the two phases, denoted by f and p, occupying a bi-disperse porous medium by mapping the available experimental data to the theoretical model proposed by Nield and Kuznetsov. Data pertinent to plate-fin heat exchangers, as bi-disperse porous media, were used. The measured pressure drops for such heat exchangers are then used to give the overall permeability which is linked to the porosity and permeability of each phase as well as the interfacial momentum transfer coefficient between the two phases. Accordingly, numerical values are obtained for the momentum transfer coefficient for three different fin spacing values considered in the heat exchanger experiments.
Resumo:
Marking Strange is a series of collaborative experimental creative works undertaken by Marissa Lindquist and Andrzej Pytel which explores the relationship between the body, new materiality and its application within different facets of design production. The ongoing experimental practice looks toward both organic and inorganic materials as a means of informing scholarly research, material development for commercial, installation and speculative design production and for academic studio programs. The work draws from theoretical positions such as Heidegger’s "nearness and revealing" (1927-1954), Simondon’s "transduction theory" (1989) and Burke's "sublime" (1757). Making Strange work has been exhibited within the Australian Pavilion Catalogue, FORMATIONS: New Practices in Australian Architecture, directed by Gerard Reinmuth and Anthony Burke with TOKO Concept Design, for the Venice International Architecture Biennale, 2012.
Resumo:
The aim of this paper is to utilize a poroviscohyperelastic (PVHE) model which is developed based on the porohyperelastic (PHE) model to explore the mechanical deformation properties of single chondrocytes. Both creep and relaxation responses are investigated by using FEM models of micropipette aspiration and AFM experiments, respectively. The newly developed PVHE model is compared thoroughly with the SnHS and PHE models. It has been found that the PVHE can accurately capture both creep and stress relaxation behaviors of chondrocytes better than other two models. Hence, the PVHE is a promising model to investigate mechanical properties of single chondrocytes.