236 resultados para workability optimisation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An iterative method for the fit optimisation of a pre-contoured fracture fixation plate for a given bone data set is presented. Both plate shape optimisation and plate fit quantification are conducted in a virtual environment utilising computer graphical methods and 3D bone and plate models. Two optimised shapes of the undersurface of an existing distal medial tibia plate were generated based on a dataset of 45 3D bone models reconstructed from computed tomography image data of Japanese tibiae. The existing plate shape achieved an anatomical fit on 13% of tibiae from the dataset. Modified plate 1 achieved an anatomical fit for 42% and modified plate 2 a fit for 67% of the bones. If either modified plate 1 or plate 2 is used, then the anatomical fit can be increased to 82% for the same dataset. Issues pertaining to any further improvement in plate fit/shape are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main aims in artificial intelligent system is to develop robust and efficient optimisation methods for Multi-Objective (MO) and Multidisciplinary Design (MDO) design problems. The paper investigates two different optimisation techniques for multi-objective design optimisation problems. The first optimisation method is a Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The second method combines the concepts of Nash-equilibrium and Pareto optimality with Multi-Objective Evolutionary Algorithms (MOEAs) which is denoted as Hybrid-Game. Numerical results from the two approaches are compared in terms of the quality of model and computational expense. The benefit of using the distributed hybrid game methodology for multi-objective design problems is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over recent years, Unmanned Air Vehicles or UAVs have become a powerful tool for reconnaissance and surveillance tasks. These vehicles are now available in a broad size and capability range and are intended to fly in regions where the presence of onboard human pilots is either too risky or unnecessary. This paper describes the formulation and application of a design framework that supports the complex task of multidisciplinary design optimisation of UAVs systems via evolutionary computation. The framework includes a Graphical User Interface (GUI), a robust Evolutionary Algorithm optimiser named HAPEA, several design modules, mesh generators and post-processing capabilities in an integrated platform. These population –based algorithms such as EAs are good for cases problems where the search space can be multi-modal, non-convex or discontinuous, with multiple local minima and with noise, and also problems where we look for multiple solutions via Game Theory, namely a Nash equilibrium point or a Pareto set of non-dominated solutions. The application of the methodology is illustrated on conceptual and detailed multi-criteria and multidisciplinary shape design problems. Results indicate the practicality and robustness of the framework to find optimal shapes and trade—offs between the disciplinary analyses and to produce a set of non dominated solutions of an optimal Pareto front to the designer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Genetic Algorithms (GA) approach to search the optimized path for a class of transportation problems. The formulation of the problems for suitable application of GA will be discussed. Exchanging genetic information in the sense of neighborhoods will be introduced for generation reproduction. The performance of the GA will be evaluated by computer simulation. The proposed algorithm use simple coding with population size 1 converged in reasonable optimality within several minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computation Fluid Dynamics (CFD) has become an important tool in optimization and has seen successful in many real world applications. Most important among these is in the optimisation of aerodynamic surfaces which has become Multi-Objective (MO) and Multidisciplinary (MDO) in nature. Most of these have been carried out for a given set of input parameters such as free stream Mach number and angle of attack. One cannot ignore the fact that in aerospace engineering one frequently deals with situations where the design input parameters and flight/flow conditions have some amount of uncertainty attached to them. When the optimisation is carried out for fixed values of design variables and parameters however, one arrives at an optimised solution that results in good performance at design condition but poor drag or lift to drag ratio at slightly off-design conditions. The challenge is still to develop a robust design that accounts for uncertainty in the design in aerospace applications. In this paper this issue is taken up and an attempt is made to prevent the fluctuation of objective performance by using robust design technique or Uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With rising environmental alarm, the reduction of critical aircraft emissions including carbon dioxides (CO2) and nitrogen oxides (NOx) is one of most important aeronautical problems. There can be many possible attempts to solve such problem by designing new wing/aircraft shape, new efficient engine, etc. The paper rather provides a set of acceptable flight plans as a first step besides replacing current aircrafts. The paper investigates a green aircraft design optimisation in terms of aircraft range, mission fuel weight (CO2) and NOx using advanced Evolutionary Algorithms coupled to flight optimisation system software. Two multi-objective design optimisations are conducted to find the best set of flight plans for current aircrafts considering discretised altitude and Mach numbers without designing aircraft shape and engine types. The objectives of first optimisation are to maximise range of aircraft while minimising NOx with constant mission fuel weight. The second optimisation considers minimisation of mission fuel weight and NOx with fixed aircraft range. Numerical results show that the method is able to capture a set of useful trade-offs that reduce NOx and CO2 (minimum mission fuel weight).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes to improve spoken term detection (STD) accuracy by optimising the Figure of Merit (FOM). In this article, the index takes the form of phonetic posterior-feature matrix. Accuracy is improved by formulating STD as a discriminative training problem and directly optimising the FOM, through its use as an objective function to train a transformation of the index. The outcome of indexing is then a matrix of enhanced posterior-features that are directly tailored for the STD task. The technique is shown to improve the FOM by up to 13% on held-out data. Additional analysis explores the effect of the technique on phone recognition accuracy, examines the actual values of the learned transform, and demonstrates that using an extended training data set results in further improvement in the FOM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectrum sensing optimisation techniques maximise the efficiency of spectrum sensing while satisfying a number of constraints. Many optimisation models consider the possibility of the primary user changing activity state during the secondary user's transmission period. However, most ignore the possibility of activity change during the sensing period. The observed primary user signal during sensing can exhibit a duty cycle which has been shown to severely degrade detection performance. This paper shows that (a) the probability of state change during sensing cannot be neglected and (b) the true detection performance obtained when incorporating the duty cycle of the primary user signal can deviate significantly from the results expected with the assumption of no such duty cycle.