172 resultados para wind power integration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the possibility of using grid side inverter as an interface to connect energy storage systems. A dual inverter system, formed by cascading two 2-level inverters through a coupling transformer, is used as the testing model. The inverters are named as “main inverter” and “auxiliary inverter”. The main inverter is powered by the rectified output of the wind generator while the auxiliary inverter is attached to a Battery Energy Storage System (BESS). If there is a surplus of wind power compared to the demand, then that would be stored in BESS while if there is a deficit in wind power then the demand will be satisfied by supplying power from the BESS. This enables constant power dispatch to the grid irrespective of wind changes. Novel modulation and control techniques are proposed to address the problem of non-integer, dynamically-varying dc-link voltage ratio, which is due to random wind changes. Furthermore, a maximum power tracking controller for this unique system is explained in detail. Simulation results verify the efficacy of proposed modulation and control techniques in suppressing random power fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter discussed the various modes of operation of the Doubly Fed Induction Generator (DFIG) based wind farm system. The impact of a auxiliary damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using Bacteria Foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system under Super/Sub-synchronous speed of operation. The robustness issue of the damping controller is also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has become more and more demanding to investigate the impacts of wind farms on power system operation as ever-increasing penetration levels of wind power have the potential to bring about a series of dynamic stability problems for power systems. This paper undertakes such an investigation through investigating the small signal and transient stabilities of power systems that are separately integrated with three types of wind turbine generators (WTGs), namely the squirrel cage induction generator (SCIG), the doubly fed induction generator (DFIG), and the permanent magnet generator (PMG). To examine the effects of these WTGs on a power system with regard to its stability under different operating conditions, a selected synchronous generator (SG) of the well-known Western Electricity Coordinating Council (WECC three-unit nine-bus system and an eight-unit 24-bus system is replaced in turn by each type of WTG with the same capacity. The performances of the power system in response to the disturbances are then systematically compared. Specifically, the following comparisons are undertaken: (1) performances of the power system before and after the integration of the WTGs; and (2) performances of the power system and the associated consequences when the SCIG, DFIG, or PMG are separately connected to the system. These stability case studies utilize both eigenvalue analysis and dynamic time-domain simulation methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interfacing converters used in connecting energy storage systems like supercapacitors and battery banks to wind power systems introduce additional cost and power losses. This paper therefore presents a direct integration scheme for supercapacitors used in mitigating short-term power fluctuations in wind power systems. This scheme uses a dual inverter topology for both grid connection and interfacing a supercapacitor bank. The main inverter of the dual inverter system is powered by the rectified output of a wind turbine-coupled permanent-magnet synchronous generator. The auxiliary inverter is directly connected to the supercapacitor bank. With this approach, an interfacing converter is not required, and there are no associated costs and power losses incurred. The operation of the proposed system is discussed in detail. Simulation and experimental results are presented to verify the efficacy of the proposed system in suppressing short-term wind power fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a capacitor-clamped three-level inverter-based supercapacitor direct integration scheme for wind energy conversion systems. The idea is to increase the capacitance of clamping capacitors with the use of supercapacitors and allow their voltage to vary within a defined range. Even though this unique approach eliminates the need of interfacing dc-dc converters for supercapacitors, the variable voltage operation brings about several challenges. The uneven distribution of space vectors is the major modulation challenge. A space vector modulation method is proposed in this paper to address this issue and to generate undistorted currents even in the presence of dynamic changes in supercapacitor voltages. A supercapacitor voltage equalization algorithm is also presented. Moreover, control strategies of the proposed system are discussed in detail. Simulation and experimental results are presented to verify the efficacy of the proposed system in suppressing short-term wind power fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new direct integration scheme for supercapacitors that are used to mitigate short term power fluctuations in wind power systems. The proposed scheme uses the popular dual inverter topology for grid connection as well as interfacing a supercapacitor bank. The dual inverter system is formed by cascading two 2-level inverters named as the “main inverter” and the “auxiliary inverter”. The main inverter is powered by the rectified output of a wind turbine coupled permanent magnet synchronous generator. The auxiliary inverter is directly connected to a super capacitor bank. This approach eliminates the need for an interfacing dc-dc converter for the supercapacitor bank and thus improves the overall efficiency. A detailed analysis on the effects of non-integer dynamically changing voltage ratio is presented. The concept of integrated boost rectifier is used to carry out the Maximum Power Point Tracking (MPPT) of the wind turbine generator. Another novel feature of this paper is the power reference adjuster which effectively manages capacitor charging and discharging at extreme conditions. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of large-scale wind farms and their integration into electrical grids, more uncertainties, constraints and objectives must be considered in power system development. It is therefore necessary to introduce risk-control strategies into the planning of transmission systems connected with wind power generators. This paper presents a probability-based multi-objective model equipped with three risk-control strategies. The model is developed to evaluate and enhance the ability of the transmission system to protect against overload risks when wind power is integrated into the power system. The model involves: (i) defining the uncertainties associated with wind power generators with probability measures and calculating the probabilistic power flow with the combined use of cumulants and Gram-Charlier series; (ii) developing three risk-control strategies by specifying the smallest acceptable non-overload probability for each branch and the whole system, and specifying the non-overload margin for all branches in the whole system; (iii) formulating an overload risk index based on the non-overload probability and the non-overload margin defined; and (iv) developing a multi-objective transmission system expansion planning (TSEP) model with the objective functions composed of transmission investment and the overload risk index. The presented work represents a superior risk-control model for TSEP in terms of security, reliability and economy. The transmission expansion planning model with the three risk-control strategies demonstrates its feasibility in the case study using two typical power systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supercapacitors are increasingly used as short term energy storage elements in distributed generation systems. The traditional approach in integrating them to the main system is the use of interfacing dc-dc converters which introduce additional costs and power losses. This paper therefore, presents a novel direct integration scheme for supercapacitors and thereby eliminates associated costs and power losses of interfacing converters. The idea is simply to replace ordinary capacitors of three-level flying-capacitor rectifiers with supercapacitors and operate them under variable voltage conditions. An analysis on the reduction of power losses by the proposed system is presented. Furthermore, supercapacitor sizing and implementation issues such as effects of the variable voltage operation and resistive behavior of supercapacitors at high frequencies are also discussed. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term power fluctuations in wind generation system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Three-Phase Nine-Switch Converter (NSC) topology for Doubly Fed Induction Generator in wind energy generation is proposed in this paper. This converter topology was used in various applications such as Hybrid Electric Vehicles and Uninterruptable Power Supplies. In this paper, Nine-Switch Converter is introduced in Doubly Fed Induction Generator in renewable energy application for the first time. It replaces the conventional Back-to-Back Pulse Width Modulated voltage source converter (VSC) which composed of twelve switches in many DFIG applications. Reduction in number of switches is the most beneficial in terms of cost and power switching losses. The operation principle of Nine-Switch Converter using SPWM method is discussed. The resulting NSC performance of rotor side current control, active power and reactive control are compared with Back-to Back voltage source converter performance. DC link voltage regulation using front end converter is also presented. Finally the simulation results of DFIG performances using NSC and Back-to-Back VSC are analyzed and compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Battery-supercapacitor hybrid energy storage systems are becoming popular in the renewable energy sector due to their improved power and energy performances. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid interfacing inverter. These additional dc-dc converters increase power losses, complexity and cost. Therefore, possibility of their direct connection is investigated in this paper. The inverter system used in this study is formed by cascading two 3-level inverters, named as the “main inverter” and the “auxiliary inverter”, through a coupling transformer. In the test system the main inverter is connected with the rectified output of a wind generator while the auxiliary inverter is directly attached to a battery and a supercapacitor bank. The major issues with this approach are the dynamic changes in dc-link voltages and inevitable imbalances in the auxiliary inverter voltages, which results in unevenly distributed space vectors. A modified SVM technique is proposed to solve this issue. A PWM based time sharing method is proposed for power sharing between the battery and the supercapacitor. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An offshore wind turbine usually has the grid step-up transformer integrated in the nacelle. This increases mechanical loading of the tower. In that context, a transformer-less, high voltage, highly-reliable and compact converter system for nacelle installation would be an attractive solution for large offshore wind turbines. This paper, therefore, presents a transformer-less grid integration topology for PMSG based large wind turbine generator systems using modular matrix converters. Each matrix converter module is fed from three generator coils of the PMSG which are phase shifted by 120°. Outputs of matrix converter modules are connected in series to increase the output voltage and thus eliminate the need of a coupling step-up transformer. Moreover, dc-link capacitors found in conventional back-to-back converter topologies are eliminated in the proposed system. Proper multilevel output voltage generation and power sharing between converter modules are achieved through an advanced switching strategy. Simulation results are presented to validate the proposed modular matrix converter system, modulation method and control techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Battery energy storage system (BESS) is to be incorporated in a wind farm to achieve constant power dispatch. The design of the BESS is based on the forecasted wind speed, and the technique assumes the distribution of the error between the forecasted and actual wind speeds is Gaussian. It is then shown that although the error between the predicted and actual wind powers can be evaluated, it is non-Gaussian. With the known distribution in the error of the predicted wind power, the capacity of the BESS can be determined in terms of the confident level in meeting specified constant power dispatch commitment. Furthermore, a short-term power dispatch strategy is also developed which takes into account the state of charge (SOC) of the BESS. The proposed approach is useful in the planning of the wind farm-BESS scheme and in the operational planning of the wind power generating station.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was a step forward in developing probabilistic assessment of power system response to faults subject to intermittent generation by renewable energy. It has investigated the wind power fluctuation effect on power system stability, and the developed fast estimation process has demonstrated the feasibility for real-time implementation. A better balance between power network security and efficiency can be achieved based on this research outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adjustable speed induction generators, especially the Doubly-Fed Induction Generators (DFIG) are becoming increasingly popular due to its various advantages over fixed speed generator systems. A DFIG in a wind turbine has ability to generate maximum power with varying rotational speed, ability to control active and reactive by integration of electronic power converters such as the back-to-back converter, low rotor power rating resulting in low cost converter components, etc, DFIG have become very popular in large wind power conversion systems. This chapter presents an extensive literature survey over the past 25 years on the different aspects of DFIG. Application of H8 Controller for enhanced DFIG-WT performance in terms of robust stability and reference tracking to reduce mechanical stress and vibrations is also demonstrated in the chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.