271 resultados para virus RNA


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Barley yellow dwarf virus-PAV (BYDV-PAV) is the most serious and widespread virus of cereals worldwide. Natural resistance genes against this luteovirus give inadequate control, and previous attempts to introduce synthetic resistance into cereals have produced variable results. In an attempt to generate barley with protection against BYDV-PAV, plants were transformed with a transgene designed to produce hairpin (hp)RNA containing BYDV-PAV sequences. From 25 independent barley lines transformed with the BYDV-PAV hpRNA construct, nine lines showed extreme resistance to the virus and the majority of these contained a single transgene. In the progeny of two independent transgenic lines, inheritance of a single transgene consistently correlated with protection against BYDV-PAV. This protection was rated as immunity because the virus could not be detected in the challenged plants by ELISA nor recovered by aphid feeding experiments. In the field, BYDV-PAV is sometimes associated with the related luteovirus Cereal yellow dwarf virus-RPV (CYDV-RPV). When the transgenic plants were challenged with BYDV-PAV and CYDV-RPV together, the plants were susceptible to CYDV-RPV but immune to BYDV-PAV. This shows that the immunity is virus-specific and not broken down by the presence of CYDV. It suggests that CYDV-RPV does not encode a silencing-suppressor gene or that its product does not protect BYDV-PAV against the plant's RNAi-like defence mechanism. Either way, our results indicate that the BYDV-PAV immunity will be robust in the field and is potentially useful in minimizing losses in cereal production worldwide.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An RNA molecule with properties of a satellite RNA was found in an isolate of barley yellow dwarf virus (BYDV), RPV serotype. It is 322 nucleotides long, single-stranded, and does not hybridize to the viral genome. Dimers of the RNA, which presumably represent replicative intermediates, were able to self-cleave into monomers. In vitro transcripts from cDNA clones were capable of self-cleavage in both the plus (encapsidated) and minus orientations. The sequence flanking the minus strand cleavage site contained a consensus " hammerhead" structure, similar to those found in other self-cleaving satellite RNAs. Although related to the hammerhead structure, sequences flanking the plus strand termini showed differences from the consensus and may be folded into a different structure containing a pseudoknot. © 1991.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differentiation of rice tungro spherical virus variants by RTPCR and RFLP tungro bacilliform virus (RTBV), the other causal agent, which causes the symptoms. RTSV is a single-stranded RNA virus of 12,180 nucleotides (Hull 1996).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rice grassy stunt virus is a member of the genus Tenuivirus, is persistently transmitted by a brown planthopper, and has occurred in rice plants in South, Southeast, and East Asia (similar to North and South America). We determined the complete nucleotide (nt) sequences of RNAs 1 (9760 nt), 2 (4069 nt), 3 (3127 nt), 4 (2909 nt), 5 (2704 nt), and 6 (2590 nt) of a southern Philippine isolate from South Cotabato and compared them with those of a northern Philippine isolate from Laguna (Toriyama et al., 1997, 1998). The numbers of nucleotides in the terminal untranslated regions and open reading frames were identical between the two isolates except for the 5′ untranslated region of the complementary strand of RNA 4. Overall nucleotide differences between the two isolates were only 0.08% in RNA 1, 0.58% in RNA 4, and 0.26% in RNA 5, whereas they were 2.19% in RNA 2, 8.38% in RNA 3, and 3.63% in RNA 6. In the intergenic regions, the two isolates differed by 9.12% in RNA 2, 11.6% in RNA 3, and 6.86% in RNA 6 with multiple consecutive nucleotide deletion/insertions, whereas they differed by only 0.78% in RNA 4 and 0.34% in RNA 5. The nucleotide variation in the intergenic region of RNA 6 within the South Cotabato isolate was only 0.33%. These differences in accumulation of mutations among individual RNA segments indicate that there was genetic reassortment in the two geographical isolates; RNAs 1, 4, and 5 of the two isolates came from a common ancestor, whereas RNAs 2, 3, and 6 were from two different ancestors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two adjacent genes of coat protein 1 and 2 of rice tungro spherical virus (RTSV) were amplified from total RNA extracts of serologically indistinguishable field isolates from the Philippines and Indonesia, using reverse transcriptase polymerase chain reaction (RT-PCR). Digestion with HindIII and BstYI restriction endonucleases differentiated the amplified DNA products into eight distinct coat protein genotypes. These genotypes were then used as indicators of virus diversity in the field. Inter- and intra-site diversities were determined over three cropping seasons. At each of the sites surveyed, one or two main genotypes prevailed together with other related minor or mixed genotypes that did not replace the main genotype over the sampling time. The cluster of genotypes found at the Philippines sites was significantly different from the one at the Indonesia sites, suggesting geographic isolation for virus populations. Phylogenetic studies based on the nucleotide sequences of 38 selected isolates confirm the spatial distribution of RTSV virus populations but show that gene flow may occur between populations. Under the present conditions, rice varieties do not seem to exert selective pressure on the virus populations. Based on the selective constraints in the coat protein amino acid sequences and the virus genetic composition per site, a negative selection model followed by random-sampling events due to vector transmissions is proposed to explain the inter-site diversity observed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sequence of thirty-six nucleotides in the nsP3 gene of Ross River virus (RRV), coding for the amino acid sequence HADTVSLDSTVS, was duplicated some time between 1969 and 1979 coinciding with the appearance of a new lineage of this virus and with a major outbreak of Epidemic Polyarthritis among residents of the Pacific Islands. This lineage of RRV continues to circulate throughout Australia and both earlier lineages, which lacked the duplicated element, now are extinct. Multiple copies of several other elements also were observed in this region of the nsP3 gene in all lineages of RRV. Multiple copies of one of these, coding for the amino acid sequence P*P*PR, were detected in the C-terminal region of the nsP3 protein of all alphaviruses except those of African origin. The fixation of duplications and insertions in 3' region of nsP3 genes from all lineages of alphaviruses, suggests they provide some fitness advantage

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An assay for the bovine viral diarrhoea virus (BVDV) replicase was developed using extracts from BVDV-infected cells. The replicase activity was maximal approximately 8 h post-infection as measured by the generation of a genomic length radiolabelled RNA. Using a semi-denaturing gel system, three virus-specific in vitro radiolabelled nascent RNA species were identified. A fast-migrating RNA was demonstrated to be the double-stranded replicative form (RF). A second form was shown to be a partially single-stranded/partially doublestranded RNA, characteristic of the replicative intermediate (RI). A third form, which was often undetectable, migrated between the RF and RI and was probably genomic viral RNA. The optimal replicase activity was dependent on 5–10mM Mg2+ and although it was also active in 1–2mM Mn2+ it was inhibited at higher concentrations. The optimum KCl concentration for labelling of the RI and RF were different, suggestive of at least two distinct replicase activities. These results are supportive of a semi-conservative model of BVDV RNA replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: HIV-1 Gag virus like particles (VLPs) used as candidate vaccines are regarded as inert particles as they contain no replicative nucleic acid, although they do encapsidate cellular RNAs. During HIV-1 Gag VLP production in baculovirus-based expression systems, VLPs incorporate the baculovirus Gp64 envelope glycoprotein, which facilitates their entry into mammalian cells. This suggests that HIV-1 Gag VLPs produced using this system facilitate uptake and subsequent expression of encapsidated RNA in mammalian cells - an unfavourable characteristic for a vaccine. Methods. HIV-1 Gag VLPs encapsidating reporter chloramphenicol acetyl transferase (CAT) RNA, were made in insect cells using the baculovirus expression system. The presence of Gp64 on the VLPs was verified by western blotting and RT-PCR used to detect and quantitate encapsidated CAT RNA. VLP samples were heated to inactivate CAT RNA. Unheated and heated VLPs incubated with selected mammalian cell lines and cell lysates tested for the presence of CAT protein by ELISA. Mice were inoculated with heated and unheated VLPs using a DNA prime VLP boost regimen. Results: HIV-1 Gag VLPs produced had significantly high levels of Gp64 (∼1650 Gp64 molecules/VLP) on their surfaces. The amount of encapsidated CAT RNA/g Gag VLPs ranged between 0.1 to 7 ng. CAT protein was detected in 3 of the 4 mammalian cell lines incubated with VLPs. Incubation with heated VLPs resulted in BHK-21 and HeLa cell lysates showing reduced CAT protein levels compared with unheated VLPs and HEK-293 cells. Mice inoculated with a DNA prime VLP boost regimen developed Gag CD8 and CD4 T cell responses to GagCAT VLPs which also boosted a primary DNA response. Heating VLPs did not abrogate these immune responses but enhanced the Gag CD4 T cell responses by two-fold. Conclusions: Baculovirus-produced HIV-1 Gag VLPs encapsidating CAT RNA were taken up by selected mammalian cell lines. The presence of CAT protein indicates that encapsidated RNA was expressed in the mammalian cells. Heat-treatment of the VLPs altered the ability of protein to be expressed in some cell lines tested but did not affect the ability of the VLPs to stimulate an immune response when inoculated into mice. © 2011 Valley-Omar et al; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Recent reports have indicated that single-stranded DNA (ssDNA) viruses in the taxonomic families Geminiviridae, Parvoviridae and Anellovirus may be evolving at rates of ∼10-4 substitutions per site per year (subs/site/year). These evolution rates are similar to those of RNA viruses and are surprisingly high given that ssDNA virus replication involves host DNA polymerases with fidelities approximately 10 000 times greater than those of error-prone viral RNA polymerases. Although high ssDNA virus evolution rates were first suggested in evolution experiments involving the geminivirus maize streak virus (MSV), the evolution rate of this virus has never been accurately measured. Also, questions regarding both the mechanistic basis and adaptive value of high geminivirus mutation rates remain unanswered. Results. We determined the short-term evolution rate of MSV using full genome analysis of virus populations initiated from cloned genomes. Three wild type viruses and three defective artificial chimaeric viruses were maintained in planta for up to five years and displayed evolution rates of between 7.4 × 10-4 and 7.9 × 10-4 subs/site/year. Conclusion. These MSV evolution rates are within the ranges observed for other ssDNA viruses and RNA viruses. Although no obvious evidence of positive selection was detected, the uneven distribution of mutations within the defective virus genomes suggests that some of the changes may have been adaptive. We also observed inter-strand nucleotide substitution imbalances that are consistent with a recent proposal that high mutation rates in geminiviruses (and possibly ssDNA viruses in general) may be due to mutagenic processes acting specifically on ssDNA molecules. © 2008 Walt et al; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Centre for High-Performance Computing, Rosebank, Cape Town, South Africa Maize streak disease, caused by the A strain of the African endemic geminivirus, maize streak mastrevirus (MSV-A), threatens the food security and livelihoods of subsistence farmers throughout sub-Saharan Africa. Using a well-established transient expression assay, this study investigated the potential of a spliceable-intron hairpin RNA (hpRNA) approach to interfere with MSV replication. Two strategies were explored: (i) an inverted repeat of a 662 bp region of the MSV replication-associated protein gene (rep), which is essential for virus replication and is therefore a good target for post-transcriptional gene silencing; and (ii) an inverted repeat of the viral long intergenic region (LIR), considered for its potential to trigger transcriptional silencing of the viral promoter region. After co-bombardment of cultured maize cells with each construct and an infectious partial dimer of the cognate virus genome (MSV-Kom), followed by viral replicativeform-specific PCR, it was clear that, whilst the hairpin rep construct (pHPrepDI662) completely inhibited MSV replication, the LIR hairpin construct was ineffective in this regard. In addition, pHPrepDI662 inhibited or reduced replication of six MSV-A genotypes representing the entire breadth of known MSV-A diversity. Further investigation by real-time PCR revealed that the pHPrepDI662 inverted repeat was 22-fold more effective at reducing virus replication than a construct containing the sense copy, whilst the antisense copy had no effect on replication when compared with the wild type. This is the first indication that an hpRNA strategy targeting MSV rep has the potential to protect transgenic. © 2011 SGM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ebola virus is a highly pathogenic filovirus causing severe hemorrhagic fever with high mortality rates. It assembles heterogenous, filamentous, enveloped virus particles containing a negative-sense, single-stranded RNA genome packaged within a helical nucleocapsid (NC). We have used cryo-electron microscopy and tomography to visualize Ebola virus particles, as well as Ebola virus-like particles, in three dimensions in a near-native state. The NC within the virion forms a left-handed helix with an inner nucleoprotein layer decorated with protruding arms composed of VP24 and VP35. A comparison with the closely related Marburg virus shows that the N-terminal region of nucleoprotein defines the inner diameter of the Ebola virus NC, whereas the RNA genome defines its length. Binding of the nucleoprotein to RNA can assemble a loosely coiled NC-like structure; the loose coil can be condensed by binding of the viral matrix protein VP40 to the C terminus of the nucleoprotein, and rigidified by binding of VP24 and VP35 to alternate copies of the nucleoprotein. Four proteins (NP, VP24, VP35, and VP40) are necessary and sufficient to mediate assembly of an NC with structure, symmetry, variability, and flexibility indistinguishable from that in Ebola virus particles released from infected cells. Together these data provide a structural and architectural description of Ebola virus and define the roles of viral proteins in its structure and assembly

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several major human pathogens, including the filoviruses, paramyxoviruses, and rhabdoviruses, package their single-stranded RNA genomes within helical nucleocapsids, which bud through the plasma membrane of the infected cell to release enveloped virions. The virions are often heterogeneous in shape, which makes it difficult to study their structure and assembly mechanisms. We have applied cryo-electron tomography and sub-tomogram averaging methods to derive structures of Marburg virus, a highly pathogenic filovirus, both after release and during assembly within infected cells. The data demonstrate the potential of cryo-electron tomography methods to derive detailed structural information for intermediate steps in biological pathways within intact cells. We describe the location and arrangement of the viral proteins within the virion. We show that the N-terminal domain of the nucleoprotein contains the minimal assembly determinants for a helical nucleocapsid with variable number of proteins per turn. Lobes protruding from alternate interfaces between each nucleoprotein are formed by the C-terminal domain of the nucleoprotein, together with viral proteins VP24 and VP35. Each nucleoprotein packages six RNA bases. The nucleocapsid interacts in an unusual, flexible "Velcro-like" manner with the viral matrix protein VP40. Determination of the structures of assembly intermediates showed that the nucleocapsid has a defined orientation during transport and budding. Together the data show striking architectural homology between the nucleocapsid helix of rhabdoviruses and filoviruses, but unexpected, fundamental differences in the mechanisms by which the nucleocapsids are then assembled together with matrix proteins and initiate membrane envelopment to release infectious virions, suggesting that the viruses have evolved different solutions to these conserved assembly steps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small interfering RNA silences specific genes by interfering with mRNA translation, and acts to modulate or inhibit specific biological pathways; a therapy that holds great promise in the cure of many diseases. However, the naked small interfering RNA is susceptible to degradation by plasma and tissue nucleases and due to its negative charge unable to cross the cell membrane. Here we report a new polymer carrier designed to mimic the influenza virus escape mechanism from the endosome, followed by a timed release of the small interfering RNA in the cytosol through a self-catalyzed polymer degradation process. Our polymer changes to a negatively charged and non-toxic polymer after the release of small interfering RNA, presenting potential for multiple repeat doses and long-term treatment of diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viroids and most viral satellites have small, noncoding, and highly structured RNA genomes. How they cause disease symptoms without encoding proteins and why they have characteristic secondary structures are two longstanding questions. Recent studies have shown that both viroids and satellites are capable of inducing RNA silencing, suggesting a possible role of this mechanism in the pathology and evolution of these subviral RNAs. Here we show that preventing RNA silencing in tobacco, using a silencing suppressor, greatly reduces the symptoms caused by the Y satellite of cucumber mosaic virus. Furthermore, tomato plants expressing hairpin RNA, derived from potato spindle tuber viroid, developed symptoms similar to those of potato spindle tuber viroid infection. These results provide evidence suggesting that viroids and satellites cause disease symptoms by directing RNA silencing against physiologically important host genes. We also show that viroid and satellite RNAs are significantly resistant to RNA silencing-mediated degradation, suggesting that RNA silencing is an important selection pressure shaping the evolution of the secondary structures of these pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleotide sequences of several animal, plant and bacterial genomes are now known, but the functions of many of the proteins that they are predicted to encode remain unclear. RNA interference is a gene-silencing technology that is being used successfully to investigate gene function in several organisms - for example, Caenorhabditis elegans. We discuss here that RNA-induced gene silencing approaches are also likely to be effective for investigating plant gene function in a high-throughput, genome-wide manner.