230 resultados para virtual currency
Resumo:
I am suspicious of tools without a purpose - tools that are not developed in response to a clearly defined problem. Of course tools without a purpose can still be useful. However the development of first generation CAD was seriously impeded because the solution came before the problem. We are in danger of repeating this mistake if we do not clarify the nature of the problem that we are trying to solve with the next generation of tools. Back in the 1980s I used to add a postscript slide at the end of CAD conference presentations and the applause would invariably turn to concern. The slide simple asked: can anyone remember what it was about design that needed aiding before we had computer aided design?
Resumo:
This short paper presents a means of capturing non spatial information (specifically understanding of places) for use in a Virtual Heritage application. This research is part of the Digital Songlines Project which is developing protocols, methodologies and a toolkit to facilitate the collection and sharing of Indigenous cultural heritage knowledge, using virtual reality. Within the context of this project most of the cultural activities relate to celebrating life and to the Australian Aboriginal people, land is the heart of life. Australian Indigenous art, stories, dances, songs and rituals celebrate country as its focus or basis. To the Aboriginal people the term “Country” means a lot more than a place or a nation, rather “Country” is a living entity with a past a present and a future; they talk about it in the same way as they talk about their mother. The landscape is seen to have a spiritual connection in a view seldom understood by non-indigenous persons; this paper introduces an attempt to understand such empathy and relationship and to reproduce it in a virtual environment.
Resumo:
Purpose – Virtual prototyping technologies linked to building information models are commonplace within the aeronautical and automotive industries. Their use within the construction industry is now emerging. The purpose of this paper is to show how these technologies have been adopted on the pre-tender planning for a typical construction project. Design/methodology/approach – The research methodology taken was an “action research” approach where the researchers and developers were actively involved in the production of the virtual prototypes on behalf of the contractor thereby gaining consistent access to the decisions of the planning staff. The experiences from the case study were considered together with similar research on other construction projects. Findings – The findings from the case studies identify the role of virtual prototyping in components modelling, site modelling, construction equipment modelling, temporary works modelling, construction method visualization and method verification processes. Originality/value – The paper presents a state-of-the-art review and discusses the implications for the tendering process as these technologies are adopted. The adoption of the technologies will lead to new protocols and changes in the procurement of buildings and infrastructure.
Resumo:
This thesis reports the outcomes of an investigation into students’ experience of Problem-based learning (PBL) in virtual space. PBL is increasingly being used in many fields including engineering education. At the same time many engineering education providers are turning to online distance education. Unfortunately there is a dearth of research into what constitutes an effective learning experience for adult learners who undertake PBL instruction through online distance education. Research was therefore focussed on discovering the qualitatively different ways that students experience PBL in virtual space. Data was collected in an electronic environment from a course, which adopted the PBL strategy and was delivered entirely in virtual space. Students in this course were asked to respond to open-ended questions designed to elicit their learning experience in the course. Data was analysed using the phenomenographical approach. This interpretative research method concentrated on mapping the qualitative differences in students’ interpretations of their experience in the course. Five qualitatively different ways of experiencing were discovered: Conception 1: ‘A necessary evil for program progression’; Conception 2: ‘Developing skills to understand, evaluate, and solve technical Engineering and Surveying problems’; Conception 3: ‘Developing skills to work effectively in teams in virtual space’; Conception 4: ‘A unique approach to learning how to learn’; Conception 5: ‘Enhancing personal growth’. Each conception reveals variation in how students attend to learning by PBL in virtual space. Results indicate that the design of students’ online learning experience was responsible for making students aware of deeper ways of experiencing PBL in virtual space. Results also suggest that the quality and quantity of interaction with the team facilitator may have a significant impact on the student experience in virtual PBL courses. The outcomes imply pedagogical strategies can be devised for shifting students’ focus as they engage in the virtual PBL experience to effectively manage the student learning experience and thereby ensure that they gain maximum benefit. The results from this research hold important ramifications for graduates with respect to their ease of transition into professional work as well as their later professional competence in terms of problem solving, ability to transfer basic knowledge to real-life engineering scenarios, ability to adapt to changes and apply knowledge in unusual situations, ability to think critically and creatively, and a commitment to continuous life-long learning and self-improvement.
Resumo:
Digital Songlines (DSL) is an Australasian CRC for Interaction Design (ACID) project that is developing protocols, methodologies and toolkits to facilitate the collection, education and sharing of indigenous cultural heritage knowledge. This paper outlines the goals achieved over the last three years in the development of the Digital Songlines game engine (DSE) toolkit that is used for Australian Indigenous storytelling. The project explores the sharing of indigenous Australian Aboriginal storytelling in a sensitive manner using a game engine. The use of the game engine in the field of Cultural Heritage is expanding. They are an important tool for the recording and re-presentation of historically, culturally, and sociologically significant places, infrastructure, and artefacts, as well as the stories that are associated with them. The DSL implementation of a game engine to share storytelling provides an educational interface. Where the DSL implementation of a game engine in a CH application differs from others is in the nature of the game environment itself. It is modelled on the 'country' (the 'place' of their heritage which is so important to the clients' collective identity) and authentic fauna and flora that provides a highly contextualised setting for the stories to be told. This paper provides an overview on the development of the DSL game engine.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.