170 resultados para vector addition systems
Resumo:
ERP systems generally implement controls to prevent certain common kinds of fraud. In addition however, there is an imperative need for detection of more sophisticated patterns of fraudulent activity as evidenced by the legal requirement for company audits and the common incidence of fraud. This paper describes the design and implementation of a framework for detecting patterns of fraudulent activity in ERP systems. We include the description of six fraud scenarios and the process of specifying and detecting the occurrence of those scenarios in ERP user log data using the prototype software which we have developed. The test results for detecting these scenarios in log data have been verified and confirm the success of our approach which can be generalized to ERP systems in general.
Resumo:
This thesis reports on the investigations, simulations and analyses of novel power electronics topologies and control strategies. The research is financed by an Australian Research Council (ARC) Linkage (07-09) grant. Therefore, in addition to developing original research and contributing to the available knowledge of power electronics, it also contributes to the design of a DC-DC converter for specific application to the auxiliary power supply in electric trains. Specifically, in this regard, it contributes to the design of a 7.5 kW DC-DC converter for the industrial partner (Schaffler and Associates Ltd) who supported this project. As the thesis is formatted as a ‘thesis by publication’, the contents are organized around published papers. The research has resulted in eleven papers, including seven peer reviewed and published conference papers, one published journal paper, two journal papers accepted for publication and one submitted journal paper (provisionally accepted subject to few changes). In this research, several novel DC-DC converter topologies are introduced, analysed, and tested. The similarity of all of the topologies devised lies in their ‘current circulating’ switching state, which allows them to store some energy in the inductor, as extra inductor current. The stored energy may be applied to enhance the performance of the converter in the occurrence of load current or input voltage disturbances. In addition, when there is an alternating load current, the ability to store energy allows the converter to perform satisfactorily despite frequently and highly varying load current. In this research, the capability of current storage has been utilised to design topologies for specific applications, and the enhancement of the performance of the considered applications has been illustrated. The simplest DC-DC converter topology, which has a ‘current circulating’ switching state, is the Positive Buck-Boost (PBB) converter (also known as the non-inverting Buck-Boost converter). Usually, the topology of the PBB converter is operating as a Buck or a Boost converter in applications with widely varying input voltage or output reference voltage. For example, in electric railways (the application of our industrial partner), the overhead line voltage alternates from 1000VDC to 500VDC and the required regulated voltage is 600VDC. In the course of this research, our industrial partner (Schaffler and Associates Ltd) industrialized a PBB converter–the ‘Mudo converter’–operating at 7.5 kW. Programming the onboard DSP and testing the PBB converter in experimental and nominal power and voltage was part of this research program. In the earlier stages of this research, the advantages and drawbacks of utilization of the ‘current circulating’ switching state in the positive Buck-Boost converter were investigated. In brief, the advantages were found to be robustness against input voltage and current load disturbances, and the drawback was extra conduction and switching loss. Although the robustness against disturbances is desirable for many applications, the price of energy loss must be minimized to attract attention to the utilization of the PBB converter. In further stages of this research, two novel control strategies for different applications were devised to minimise the extra energy loss while the advantages of the positive Buck-Boost converter were fully utilized. The first strategy is Smart Load Controller (SLC) for applications with pre-knowledge or predictability of input voltage and/or load current disturbances. A convenient example of these applications is electric/hybrid cars where a master controller commands all changes in loads and voltage sources. Therefore, the master controller has a pre-knowledge of the load and input voltage disturbances so it can apply the SLC strategy to utilize robustness of the PBB converter. Another strategy aiming to minimise energy loss and maximise the robustness in the face of disturbance is developed to cover applications with unexpected disturbances. This strategy is named Dynamic Hysteresis Band (DHB), and is used to manipulate the hysteresis band height after occurrence of disturbance to reduce dynamics of the output voltage. When no disturbance has occurred, the PBB converter works with minimum inductor current and minimum energy loss. New topologies based on the PBB converter have been introduced to address input voltage disturbances for different onboard applications. The research shows that the performance of applications of symmetrical/asymmetrical multi-level diode-clamped inverters, DC-networks, and linear-assisted RF amplifiers may be enhanced by the utilization of topologies based on the PBB converter. Multi-level diode-clamped inverters have the problem of DC-link voltage balancing when the power factor of their load closes to unity. This research has shown that this problem may be solved with a suitable multi-output DC-DC converter supplying DClink capacitors. Furthermore, the multi-level diode-clamped inverters supplied with asymmetrical DC-link voltages may improve the quality of load voltage and reduce the level of Electromagnetic Interference (EMI). Mathematical analyses and experiments on supplying symmetrical and asymmetrical multi-level inverters by specifically designed multi-output DC-DC converters have been reported in two journal papers. Another application in which the system performance can be improved by utilization of the ‘current circulating’ switching state is linear-assisted RF amplifiers in communicational receivers. The concept of ‘linear-assisted’ is to divide the signal into two frequency domains: low frequency, which should be amplified by a switching circuit; and the high frequency domain, which should be amplified by a linear amplifier. The objective is to minimize the overall power loss. This research suggests using the current storage capacity of a PBB based converter to increase its bandwidth, and to increase the domain of the switching converter. The PBB converter addresses the industrial demand for a DC-DC converter for the application of auxiliary power supply of a typical electric train. However, after testing the industrial prototype of the PBB converter, there were some voltage and current spikes because of switching. To attenuate this problem without significantly increasing the switching loss, the idea of Active Gate Signalling (AGS) is presented. AGS suggests a smart gate driver that selectively controls the switching process to reduce voltage/current spikes, without unacceptable reduction in the efficiency of switching.
Resumo:
When classifying a signal, ideally we want our classifier to trigger a large response when it encounters a positive example and have little to no response for all other examples. Unfortunately in practice this does not occur with responses fluctuating, often causing false alarms. There exists a myriad of reasons why this is the case, most notably not incorporating the dynamics of the signal into the classification. In facial expression recognition, this has been highlighted as one major research question. In this paper we present a novel technique which incorporates the dynamics of the signal which can produce a strong response when the peak expression is found and essentially suppresses all other responses as much as possible. We conducted preliminary experiments on the extended Cohn-Kanade (CK+) database which shows its benefits. The ability to automatically and accurately recognize facial expressions of drivers is highly relevant to the automobile. For example, the early recognition of “surprise” could indicate that an accident is about to occur; and various safeguards could immediately be deployed to avoid or minimize injury and damage. In this paper, we conducted initial experiments on the extended Cohn-Kanade (CK+) database which shows its benefits.
Resumo:
Visual servoing has been a viable method of robot manipulator control for more than a decade. Initial developments involved positionbased visual servoing (PBVS), in which the control signal exists in Cartesian space. The younger method, image-based visual servoing (IBVS), has seen considerable development in recent years. PBVS and IBVS offer tradeoffs in performance, and neither can solve all tasks that may confront a robot. In response to these issues, several methods have been devised that partition the control scheme, allowing some motions to be performed in the manner of a PBVS system, while the remaining motions are performed using an IBVS approach. To date, there has been little research that explores the relative strengths and weaknesses of these methods. In this paper we present such an evaluation. We have chosen three recent visual servo approaches for evaluation in addition to the traditional PBVS and IBVS approaches. We posit a set of performance metrics that measure quantitatively the performance of a visual servo controller for a specific task. We then evaluate each of the candidate visual servo methods for four canonical tasks with simulations and with experiments in a robotic work cell.
Resumo:
The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia.
Resumo:
The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia
Resumo:
The design and implementation of a high-power (2 MW peak) vector control drive is described. The inverter switching frequency is low, resulting in high-harmonic-content current waveforms. A block diagram of the physical system is given, and each component is described in some detail. The problem of commanded slip noise sensitivity, inherent in high-power vector control drives, is discussed, and a solution is proposed. Results are given which demonstrate the successful functioning of the system
Resumo:
This study investigated a novel drug delivery system (DDS), consisting of polycaprolactone (PCL) or polycaprolactone 20% tricalcium phosphate (PCL-TCP) biodegradable scaffolds, fibrin Tisseel sealant and recombinant bone morphogenetic protein-2 (rhBMP-2) for bone regeneration. PCL and PCL-TCP-fibrin composites displayed a loading efficiency of 70% and 43%, respectively. Fluorescence and scanning electron microscopy revealed sparse clumps of rhBMP-2 particles, non-uniformly distributed on the rods’ surface of PCL-fibrin composites. In contrast, individual rhBMP-2 particles were evident and uniformly distributed on the rods’ surface of the PCL-TCP-fibrin composites. PCL-fibrin composites loaded with 10 and 20 μg/ml rhBMP-2 demonstrated a triphasic release profile as quantified by an enzyme-linked immunosorbent assay (ELISA). This consisted of burst releases at 2 h, and days 7 and 16. A biphasic release profile was observed for PCL-TCP-fibrin composites loaded with 10 μg/ml rhBMP-2, consisting of burst releases at 2 h and day 14. PCL-TCP-fibrin composites loaded with 20 μg/ml rhBMP-2 showed a tri-phasic release profile, consisting of burst releases at 2 h, and days 10 and 21. We conclude that the addition of TCP caused a delay in rhBMP-2 release. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and alkaline phosphatase assay verified the stability and bioactivity of eluted rhBMP-2 at all time points
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.
Resumo:
AC motors are largely used in a wide range of modern systems, from household appliances to automated industry applications such as: ventilations systems, fans, pumps, conveyors and machine tool drives. Inverters are widely used in industrial and commercial applications due to the growing need for speed control in ASD systems. Fast switching transients and the common mode voltage, in interaction with parasitic capacitive couplings, may cause many unwanted problems in the ASD applications. These include shaft voltage and leakage currents. One of the inherent characteristics of Pulse Width Modulation (PWM) techniques is the generation of the common mode voltage, which is defined as the voltage between the electrical neutral of the inverter output and the ground. Shaft voltage can cause bearing currents when it exceeds the amount of breakdown voltage level of the thin lubricant film between the inner and outer rings of the bearing. This phenomenon is the main reason for early bearing failures. A rapid development in power switches technology has lead to a drastic decrement of switching rise and fall times. Because there is considerable capacitance between the stator windings and the frame, there can be a significant capacitive current (ground current escaping to earth through stray capacitors inside a motor) if the common mode voltage has high frequency components. This current leads to noises and Electromagnetic Interferences (EMI) issues in motor drive systems. These problems have been dealt with using a variety of methods which have been reported in the literature. However, cost and maintenance issues have prevented these methods from being widely accepted. Extra cost or rating of the inverter switches is usually the price to pay for such approaches. Thus, the determination of cost-effective techniques for shaft and common mode voltage reduction in ASD systems, with the focus on the first step of the design process, is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. Electrical power generation from renewable energy sources, such as wind energy systems, has become a crucial issue because of environmental problems and a predicted future shortage of traditional energy sources. Thus, Chapter 2 focuses on the shaft voltage analysis of stator-fed induction generators (IG) and Doubly Fed Induction Generators DFIGs in wind turbine applications. This shaft voltage analysis includes: topologies, high frequency modelling, calculation and mitigation techniques. A back-to-back AC-DC-AC converter is investigated in terms of shaft voltage generation in a DFIG. Different topologies of LC filter placement are analysed in an effort to eliminate the shaft voltage. Different capacitive couplings exist in the motor/generator structure and any change in design parameters affects the capacitive couplings. Thus, an appropriate design for AC motors should lead to the smallest possible shaft voltage. Calculation of the shaft voltage based on different capacitive couplings, and an investigation of the effects of different design parameters are discussed in Chapter 3. This is achieved through 2-D and 3-D finite element simulation and experimental analysis. End-winding parameters of the motor are also effective factors in the calculation of the shaft voltage and have not been taken into account in previous reported studies. Calculation of the end-winding capacitances is rather complex because of the diversity of end winding shapes and the complexity of their geometry. A comprehensive analysis of these capacitances has been carried out with 3-D finite element simulations and experimental studies to determine their effective design parameters. These are documented in Chapter 4. Results of this analysis show that, by choosing appropriate design parameters, it is possible to decrease the shaft voltage and resultant bearing current in the primary stage of generator/motor design without using any additional active and passive filter-based techniques. The common mode voltage is defined by a switching pattern and, by using the appropriate pattern; the common mode voltage level can be controlled. Therefore, any PWM pattern which eliminates or minimizes the common mode voltage will be an effective shaft voltage reduction technique. Thus, common mode voltage reduction of a three-phase AC motor supplied with a single-phase diode rectifier is the focus of Chapter 5. The proposed strategy is mainly based on proper utilization of the zero vectors. Multilevel inverters are also used in ASD systems which have more voltage levels and switching states, and can provide more possibilities to reduce common mode voltage. A description of common mode voltage of multilevel inverters is investigated in Chapter 6. Chapter 7 investigates the elimination techniques of the shaft voltage in a DFIG based on the methods presented in the literature by the use of simulation results. However, it could be shown that every solution to reduce the shaft voltage in DFIG systems has its own characteristics, and these have to be taken into account in determining the most effective strategy. Calculation of the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions is discussed in Chapter 8. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.
Resumo:
Tobacco yellow dwarf virus (TbYDV, family Geminiviridae, genus Mastrevirus) is an economically important pathogen causing summer death and yellow dwarf disease in bean (Phaseolus vulgaris L.) and tobacco (Nicotiana tabacum L.), respectively. Prior to the commencement of this project, little was known about the epidemiology of TbYDV, its vector and host-plant range. As a result, disease control strategies have been restricted to regular poorly timed insecticide applications which are largely ineffective, environmentally hazardous and expensive. In an effort to address this problem, this PhD project was carried out in order to better understand the epidemiology of TbYDV, to identify its host-plant and vectors as well as to characterise the population dynamics and feeding physiology of the main insect vector and other possible vectors. The host-plants and possible leafhopper vectors of TbYDV were assessed over three consecutive growing seasons at seven field sites in the Ovens Valley, Northeastern Victoria, in commercial tobacco and bean growing properties. Leafhoppers and plants were collected and tested for the presence of TbYDV by PCR. Using sweep nets, twenty-three leafhopper species were identified at the seven sites with Orosius orientalis the predominant leafhopper. Of the 23 leafhopper species screened for TbYDV, only Orosius orientalis and Anzygina zealandica tested positive. Forty-two different plant species were also identified at the seven sites and tested. Of these, TbYDV was only detected in four dicotyledonous species, Amaranthus retroflexus, Phaseolus vulgaris, Nicotiana tabacum and Raphanus raphanistrum. Using a quadrat survey, the temporal distribution and diversity of vegetation at four of the field sites was monitored in order to assess the presence of, and changes in, potential host-plants for the leafhopper vector(s) and the virus. These surveys showed that plant composition and the climatic conditions at each site were the major influences on vector numbers, virus presence and the subsequent occurrence of tobacco yellow dwarf and bean summer death diseases. Forty-two plant species were identified from all sites and it was found that sites with the lowest incidence of disease had the highest proportion of monocotyledonous plants that are non hosts for both vector and the virus. In contrast, the sites with the highest disease incidence had more host-plant species for both vector and virus, and experienced higher temperatures and less rainfall. It is likely that these climatic conditions forced the leafhopper to move into the irrigated commercial tobacco and bean crop resulting in disease. In an attempt to understand leafhopper species diversity and abundance, in and around the field borders of commercially grown tobacco crops, leafhoppers were collected from four field sites using three different sampling techniques, namely pan trap, sticky trap and sweep net. Over 51000 leafhopper samples were collected, which comprised 57 species from 11 subfamilies and 19 tribes. Twentythree leafhopper species were recorded for the first time in Victoria in addition to several economically important pest species of crops other than tobacco and bean. The highest number and greatest diversity of leafhoppers were collected in yellow pan traps follow by sticky trap and sweep nets. Orosius orientalis was found to be the most abundant leafhopper collected from all sites with greatest numbers of this leafhopper also caught using the yellow pan trap. Using the three sampling methods mentioned above, the seasonal distribution and population dynamics of O. orientalis was studied at four field sites over three successive growing seasons. The population dynamics of the leafhopper was characterised by trimodal peaks of activity, occurring in the spring and summer months. Although O. orientalis was present in large numbers early in the growing season (September-October), TbYDV was only detected in these leafhoppers between late November and the end of January. The peak in the detection of TbYDV in O. orientalis correlated with the observation of disease symptoms in tobacco and bean and was also associated with warmer temperatures and lower rainfall. To understand the feeding requirements of Orosius orientalis and to enable screening of potential control agents, a chemically-defined artificial diet (designated PT-07) and feeding system was developed. This novel diet formulation allowed survival for O. orientalis for up to 46 days including complete development from first instar through to adulthood. The effect of three selected plant derived proteins, cowpea trypsin inhibitor (CpTi), Galanthus nivalis agglutinin (GNA) and wheat germ agglutinin (WGA), on leafhopper survival and development was assessed. Both GNA and WGA were shown to reduce leafhopper survival and development significantly when incorporated at a 0.1% (w/v) concentration. In contrast, CpTi at the same concentration did not exhibit significant antimetabolic properties. Based on these results, GNA and WGA are potentially useful antimetabolic agents for expression in genetically modified crops to improve the management of O. orientalis, TbYDV and the other pathogens it vectors. Finally, an electrical penetration graph (EPG) was used to study the feeding behaviour of O. orientalis to provide insights into TbYDV acquisition and transmission. Waveforms representing different feeding activity were acquired by EPG from adult O. orientalis feeding on two plant species, Phaseolus vulgaris and Nicotiana tabacum and a simple sucrose-based artificial diet. Five waveforms (designated O1-O5) were observed when O. orientalis fed on P. vulgaris, while only four (O1-O4) and three (O1-O3) waveforms were observed during feeding on N. tabacum and the artificial diet, respectively. The mean duration of each waveform and the waveform type differed markedly depending on the food source. This is the first detailed study on the tritrophic interactions between TbYDV, its leafhopper vector, O. orientalis, and host-plants. The results of this research have provided important fundamental information which can be used to develop more effective control strategies not only for O. orientalis, but also for TbYDV and other pathogens vectored by the leafhopper.
Resumo:
Mechanical control systems have become a part of our everyday life. Systems such as automobiles, robot manipulators, mobile robots, satellites, buildings with active vibration controllers and air conditioning systems, make life easier and safer, as well as help us explore the world we live in and exploit it’s available resources. In this chapter, we examine a specific example of a mechanical control system; the Autonomous Underwater Vehicle (AUV). Our contribution to the advancement of AUV research is in the area of guidance and control. We present innovative techniques to design and implement control strategies that consider the optimization of time and/or energy consumption. Recent advances in robotics, control theory, portable energy sources and automation increase our ability to create more intelligent robots, and allows us to conduct more explorations by use of autonomous vehicles. This facilitates access to higher risk areas, longer time underwater, and more efficient exploration as compared to human occupied vehicles. The use of underwater vehicles is expanding in every area of ocean science. Such vehicles are used by oceanographers, archaeologists, geologists, ocean engineers, and many others. These vehicles are designed to be agile, versatile and robust, and thus, their usage has gone from novelty to necessity for any ocean expedition.
Resumo:
A number of reports have demonstrated the importance of the CUB domaincontaining protein 1 (CDCP1) in facilitating cancer progression in animal models and the potential of this protein as a prognostic marker in several malignancies. CDCP1 facilitates metastasis formation in animal models by negatively regulating anoikis, a type of apoptosis triggered by the loss of attachment signalling from cell-cell contacts or cell-extra cellular matrix (ECM) contacts. Due to the important role CDCP1 plays in cancer progression in model systems, it is considered a potential drug target to prevent the metastatic spread of cancers. CDCP1 is a highly glycosylated 836 amino acid cell surface protein. It has structural features potentially facilitating protein-protein interactions including 14 N-glycosylation sites, three CUB-like domains, 20 cysteine residues likely to be involved in disulfide bond formation and five intracellular tyrosine residues. CDCP1 interacts with a variety of proteins including Src family kinases (SFKs) and protein kinase C ä (PKCä). Efforts to understand the mechanisms regulating these interactions have largely focussed on three CDCP1 tyrosine residues Y734, Y743 and Y762. CDCP1-Y734 is the site where SFKs phosphorylate and bind to CDCP1 and mediate subsequent phosphorylation of CDCP1-Y743 and -Y762 which leads to binding of PKCä at CDCP1-Y762. The resulting trimeric protein complex of SFK•CDCP1•PKCä has been proposed to mediate an anti-apoptotic cell phenotype in vitro, and to promote metastasis in vivo. The effect of mutation of the three tyrosines on interactions of CDCP1 with SFKs and PKCä and the consequences on cell phenotype in vitro and in vivo have not been examined. CDCP1 has a predicted molecular weight of ~90 kDa but is usually detected as a protein which migrates at ~135 kDa by Western blot analysis due to its high degree of glycosylation. A low molecular weight form of CDCP1 (LMWCDCP1) of ~70 kDa has been found in a variety of cancer cell lines. The mechanisms leading to the generation of LMW-CDCP1 in vivo are not well understood but an involvement of proteases in this process has been proposed. Serine proteases including plasmin and trypsin are able to proteolytically process CDCP1. In addition, the recombinant protease domain of the serine protease matriptase is also able to cleave the recombinant extracellular portion of CDCP1. Whether matriptase is able to proteolytically process CDCP1 on the cell surface has not been examined. Importantly, proteolytic processing of CDCP1 by trypsin leads to phosphorylation of its cell surface-retained portion which suggests that this event leads to initiation of an intracellular signalling cascade. This project aimed to further examine the biology of CDCP1 with a main of focus on exploring the roles played by CDCP1 tyrosine residues. To achieve this HeLa cells stably expressing CDCP1 or the CDCP1 tyrosine mutants Y734F, Y743F and Y762F were generated. These cell lines were used to examine: • The roles of the tyrosine residues Y734, Y743 and Y762 in mediating interactions of CDCP1 with binding proteins and to examine the effect of the stable expression on HeLa cell morphology. • The ability of the serine protease matriptase to proteolytically process cell surface CDCP1 and to examine the consequences of this event on HeLa cell phenotype and cell signalling in vitro. • The importance of these residues in processes associated with cancer progression in vitro including adhesion, proliferation and migration. • The role of these residues on metastatic phenotype in vivo and the ability of a function-blocking anti-CDCP1 antibody to inhibit metastasis in the chicken embryo chorioallantoic membrane (CAM) assay. Interestingly, biochemical experiments carried out in this study revealed that mutation of certain CDCP1 tyrosine residues impacts on interactions of this protein with binding proteins. For example, binding of SFKs as well as PKCä to CDCP1 was markedly decreased in HeLa-CDCP1-Y734F cells, and binding of PKCä was also reduced in HeLa-CDCP1-Y762F cells. In contrast, HeLa-CDCP1-Y743F cells did not display altered interactions with CDCP1 binding proteins. Importantly, observed differences in interactions of CDCP1 with binding partners impacted on basal phosphorylation of CDCP1. It was found that HeLa-CDCP1, HeLa-CDCP1-Y743F and -Y762F displayed strong basal levels of CDCP1 phosphorylation. In contrast, HeLa-CDCP1-Y734F cells did not display CDCP1 phosphorylation but exhibited constitutive phosphorylation of focal adhesion kinase (FAK) at tyrosine 861. Significantly, subsequent investigations to examine this observation suggested that CDCP1-Y734 and FAK-Y861 are competitive substrates for SFK-mediated phosphorylation. It appeared that SFK-mediated phosphorylation of CDCP1- Y734 and FAK-Y861 is an equilibrium which shifts depending on the level of CDCP1 expression in HeLa cells. This suggests that the level of CDCP1 expression may act as a regulatory mechanism allowing cells to switch from a FAK-Y861 mediated pathway to a CDCP1-Y734 mediated pathway. This is the first time that a link between SFKs, CDCP1 and FAK has been demonstrated. One of the most interesting observations from this work was that CDCP1 altered HeLa cell morphology causing an elongated and fibroblastic-like appearance. Importantly, this morphological change depended on CDCP1- Y734. In addition, it was observed that this change in cell morphology was accompanied by increased phosphorylation of SFK-Y416. This suggests that interactions of SFKs with CDCP1-Y734 increases SFK activity since SFKY416 is critical in regulating kinase activity of these proteins. The essential role of SFKs in mediating CDCP1-induced HeLa cell morphological changes was demonstrated using the SFK-selective inhibitor SU6656. This inhibitor caused reversion of HeLa-CDCP1 cell morphology to an epithelial appearance characteristic of HeLa-vector cells. Significantly, in vitro studies revealed that certain CDCP1-mediated cell phenotypes are mediated by cellular pathways dependent on CDCP1 tyrosine residues whereas others are independent of these sites. For example, CDCP1 expression caused a marked increase in HeLa cell motility that was independent of CDCP1 tyrosine residues. In contrast, CDCP1- induced decrease in HeLa cell proliferation was most prominent in HeLa- CDCP1-Y762F cells, potentially indicating a role for this site in regulating proliferation in HeLa cells. Another cellular event which was identified to require phosphorylation of a particular CDCP1 tyrosine residue is adhesion to fibronectin. It was observed that the CDCP1-mediated strong decrease in adhesion to fibronectin is mostly restored in HeLa-CDCP1-Y743F cells. This suggests a possible role for CDCP1-Y743 in causing a CDCP1-mediated decrease in adhesion. Data from in vivo experiments indicated that HeLa-CDCP1-Y734F cells are more metastic than HeLa-CDCP1 cells in vivo. This indicates that interaction of CDCP1 with SFKs and PKCä may not be required for CDCP1-mediated metastasis formation of HeLa cells in vivo. The metastatic phenotype of these cells may be caused by signalling involving FAK since HeLa-CDCP1- Y734F cells are the only CDCP1 expressing cells displaying constitutive phosphorylation of FAK-Y861. HeLa-CDCP1-Y762F cells displayed a very low metastatic ability which suggests that this CDCP1 tyrosine residue is important in mediating a pro-metastatic phenotype in HeLa cells. More detailed exploration of cellular events occurring downstream of CDCP1-Y734 and -Y762 may provide important insights into the mechanisms altering the metastatic ability of CDCP1 expressing HeLa cells. Complementing the in vivo studies, anti-CDCP1 antibodies were employed to assess whether these antibodies are able to inhibit metastasis of CDCP1 and CDCP1 tyrosine mutants expressing HeLa cells. It was found that HeLa- CDCP1-Y734F cells were the only cell line which was markedly reduced in the ability to metastasise. In contrast, the ability of HeLa-CDCP1, HeLa- CDCP1-Y743F and -Y762F cells to metastasise in vivo was not inhibited. These data suggest a possible role of interactions of CDCP1 with SFKs, occurring at CDCP1-Y734, in preventing an anti-metastatic effect of anti- CDCP1 antibodies in vivo. The proposal that SFKs may play a role in regulating anti-metastatic effects of anti-CDCP1 antibodies was supported by another experiment where differences between HeLa-CDCP1 cells and CDCP1 expressing HeLa cells (HeLa-CDCP1-S) from collaborators at the Scripps Research Institute were examined. It was found that HeLa-CDCP1-S cells express different SFKs than CDCP1 expressing HeLa cells generated for this study. This is important since HeLa-CDCP1-S cells can be inhibited in their metastatic ability using anti-CDCP1 antibodies in vivo. Importantly, these data suggest that further examinations of the roles of SFKs in facilitating anti-metastatic effects of anti-CDCP1 antibodies may give insights into how CDCP1 can be blocked to prevent metastasis in vivo. This project also explored the ability of the serine protease matriptase to proteolytically process cell surface localised CDCP1 because it is unknown whether matriptase can cleave cell surface CDCP1 as it has been reported for other proteases such as trypsin and plasmin. Furthermore, the consequences of matriptase-mediated proteolysis on cell phenotype in vitro and cell signalling were examined since recent reports suggested that proteolysis of CDCP1 leads to its phosphorylation and may initiate cell signalling and consequently alter cell phenotype. It was found that matriptase is able to proteolytically process cell surface CDCP1 at low nanomolar concentrations which suggests that cleavage of CDCP1 by matriptase may facilitate the generation of LWM-CDCP1 in vivo. To examine whether matriptase-mediated proteolysis induced cell signalling anti-phospho Erk 1/2 Western blot analysis was performed as this pathway has previously been examined to study signalling in response to proteolytic processing of cell surface proteins. It was found that matriptase-mediated proteolysis in CDCP1 expressing HeLa cells initiated intracellular signalling via Erk 1/2. Interestingly, this increase in phosphorylation of Erk 1/2 was also observed in HeLa-vector cells. This suggested that initiation of cell signalling via Erk 1/2 phosphorylation as a result of matriptase-mediated proteolysis occurs by pathways independent of CDCP1. Subsequent investigations measuring the flux of free calcium ions and by using a protease-activated receptor 2 (PAR2) agonist peptide confirmed this hypothesis. These data suggested that matriptase-mediated proteolysis results in cell signalling via a pathway induced by the activation of PAR2 rather than by CDCP1. This indicates that induction of cell signalling in HeLa cells as a consequence of matriptase-mediated proteolysis occurs via signalling pathways which do not involve phosphorylation of Erk 1/2. Consequently, it appears that future attempts should focus on the examination of cellular pathways other than Erk 1/2 to elucidate cell signalling initiated by matriptase-mediated proteolytic processing of CDCP1. The data presented in this thesis has explored in vitro and in vivo aspects of the biology of CDCP1. The observations summarised above will permit the design of future studies to more precisely determine the role of CDCP1 and its binding partners in processes relevant to cancer progression. This may contribute to further defining CDCP1 as a target for cancer treatment.
Resumo:
Video surveillance technology, based on Closed Circuit Television (CCTV) cameras, is one of the fastest growing markets in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. To overcome this limitation, it is necessary to have “intelligent” processes which are able to highlight the salient data and filter out normal conditions that do not pose a threat to security. In order to create such intelligent systems, an understanding of human behaviour, specifically, suspicious behaviour is required. One of the challenges in achieving this is that human behaviour can only be understood correctly in the context in which it appears. Although context has been exploited in the general computer vision domain, it has not been widely used in the automatic suspicious behaviour detection domain. So, it is essential that context has to be formulated, stored and used by the system in order to understand human behaviour. Finally, since surveillance systems could be modeled as largescale data stream systems, it is difficult to have a complete knowledge base. In this case, the systems need to not only continuously update their knowledge but also be able to retrieve the extracted information which is related to the given context. To address these issues, a context-based approach for detecting suspicious behaviour is proposed. In this approach, contextual information is exploited in order to make a better detection. The proposed approach utilises a data stream clustering algorithm in order to discover the behaviour classes and their frequency of occurrences from the incoming behaviour instances. Contextual information is then used in addition to the above information to detect suspicious behaviour. The proposed approach is able to detect observed, unobserved and contextual suspicious behaviour. Two case studies using video feeds taken from CAVIAR dataset and Z-block building, Queensland University of Technology are presented in order to test the proposed approach. From these experiments, it is shown that by using information about context, the proposed system is able to make a more accurate detection, especially those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information give critical feedback to the system designers to refine the system. Finally, the proposed modified Clustream algorithm enables the system to both continuously update the system’s knowledge and to effectively retrieve the information learned in a given context. The outcomes from this research are: (a) A context-based framework for automatic detecting suspicious behaviour which can be used by an intelligent video surveillance in making decisions; (b) A modified Clustream data stream clustering algorithm which continuously updates the system knowledge and is able to retrieve contextually related information effectively; and (c) An update-describe approach which extends the capability of the existing human local motion features called interest points based features to the data stream environment.