33 resultados para uplift
Resumo:
The study reported here, constitutes a full review of the major geological events that have influenced the morphological development of the southeast Queensland region. Most importantly, it provides evidence that the region’s physiography continues to be geologically ‘active’ and although earthquakes are presently few and of low magnitude, many past events and tectonic regimes continue to be strongly influential over drainage, morphology and topography. Southeast Queensland is typified by highland terrain of metasedimentary and igneous rocks that are parallel and close to younger, lowland coastal terrain. The region is currently situated in a passive margin tectonic setting that is now under compressive stress, although in the past, the region was subject to alternating extensional and compressive regimes. As part of the investigation, the effects of many past geological events upon landscape morphology have been assessed at multiple scales using features such as the location and orientation of drainage channels, topography, faults, fractures, scarps, cleavage, volcanic centres and deposits, and recent earthquake activity. A number of hypotheses for local geological evolution are proposed and discussed. This study has also utilised a geographic information system (GIS) approach that successfully amalgamates the various types and scales of datasets used. A new method of stream ordination has been developed and is used to compare the orientation of channels of similar orders with rock fabric, in a topologically controlled approach that other ordering systems are unable to achieve. Stream pattern analysis has been performed and the results provide evidence that many drainage systems in southeast Queensland are controlled by known geological structures and by past geological events. The results conclude that drainage at a fine scale is controlled by cleavage, joints and faults, and at a broader scale, large river valleys, such as those of the Brisbane River and North Pine River, closely follow the location of faults. These rivers appear to have become entrenched by differential weathering along these planes of weakness. Significantly, stream pattern analysis has also identified some ‘anomalous’ drainage that suggests the orientations of these watercourses are geologically controlled, but by unknown causes. To the north of Brisbane, a ‘coastal drainage divide’ has been recognized and is described here. The divide crosses several lithological units of different age, continues parallel to the coast and prevents drainage from the highlands flowing directly to the coast for its entire length. Diversion of low order streams away from the divide may be evidence that a more recent process may be the driving force. Although there is no conclusive evidence for this at present, it is postulated that the divide may have been generated by uplift or doming associated with mid-Cenozoic volcanism or a blind thrust at depth. Also north of Brisbane, on the D’Aguilar Range, an elevated valley (the ‘Kilcoy Gap’) has been identified that may have once drained towards the coast and now displays reversed drainage that may have resulted from uplift along the coastal drainage divide and of the D’Aguilar blocks. An assessment of the distribution and intensity of recent earthquakes in the region indicates that activity may be associated with ancient faults. However, recent movement on these faults during these events would have been unlikely, given that earthquakes in the region are characteristically of low magnitude. There is, however, evidence that compressive stress is building and being released periodically and ancient faults may be a likely place for this stress to be released. The relationship between ancient fault systems and the Tweed Shield Volcano has also been discussed and it is suggested here that the volcanic activity was associated with renewed faulting on the Great Moreton Fault System during the Cenozoic. The geomorphology and drainage patterns of southeast Queensland have been compared with expected morphological characteristics found at passive and other tectonic settings, both in Australia and globally. Of note are the comparisons with the East Brazilian Highlands, the Gulf of Mexico and the Blue Ridge Escarpment, for example. In conclusion, the results of the study clearly show that, although the region is described as a passive margin, its complex, past geological history and present compressive stress regime provide a more intricate and varied landscape than would be expected along typical passive continental margins. The literature review provides background to the subject and discusses previous work and methods, whilst the findings are presented in three peer-reviewed, published papers. The methods, hypotheses, suggestions and evidence are discussed at length in the final chapter.
Resumo:
Crest-fixed steel claddings made of thin, high strength steel often suffer from local pull-through failures at their screw connections during high wind events such as storms and hurricanes. Adequate design provisions are not available for these cladding systems except for the expensive testing provisions. Since the local pull-through failures in the less ductile steel claddings are initiated by transverse splitting at the fastener holes, numerical studies have not been able to determine the pull-through failure loads. Numerical studies could be used if a reliable splitting criterion is available. Therefore a series of two-span cladding and small scale tests was conducted on a range of crest-fixed steel cladding systems under simulated wind uplift loads. The strains in the sheeting around the critical central support screw fastener holes were measured until the pull-through failure occurred. This paper presents the details of the experimental investigation and the results including a strain criterion for the local pull-through failures in crest-fixed steel claddings.
Resumo:
The potential restriction to effective dispersal and gene flow caused by habitat fragmentation can apply to multiple levels of evolutionary scale; from the fragmentation of ancient supercontinents driving diversification and speciation on disjunct landmasses, to the isolation of proximate populations as a result of their inability to cross intervening unsuitable habitat. Investigating the role of habitat fragmentation in driving diversity within and among taxa can thus include inferences of phylogenetic relationships among taxa, assessments of intraspecific phylogeographic structure and analyses of gene flow among neighbouring populations. The proposed Gondwanan clade within the chironomid (non-biting midge) subfamily Orthocladiinae (Diptera: Chironomidae) represents a model system for investigating the role that population fragmentation and isolation has played at different evolutionary scales. A pilot study by Krosch et al (2009) indentified several highly divergent lineages restricted to ancient rainforest refugia and limited gene flow among proximate sites within a refuge for one member of this clade, Echinocladius martini Cranston. This study provided a framework for investigating the evolutionary history of this taxon and its relatives more thoroughly. Populations of E. martini were sampled in the Paluma bioregion of northeast Queensland to investigate patterns of fine-scale within- and among-stream dispersal and gene flow within a refuge more rigorously. Data was incorporated from Krosch et al (2009) and additional sites were sampled up- and downstream of the original sites. Analyses of genetic structure revealed strong natal site fidelity and high genetic structure among geographically proximate streams. Little evidence was found for regular headwater exchange among upstream sites, but there was distinct evidence for rare adult flight among sites on separate stream reaches. Overall, however, the distribution of shared haplotypes implied that both larval and adult dispersal was largely limited to the natal stream channel. Patterns of regional phylogeographic structure were examined in two related austral orthoclad taxa – Naonella forsythi Boothroyd from New Zealand and Ferringtonia patagonica Sæther and Andersen from southern South America – to provide a comparison with patterns revealed in their close relative E. martini. Both taxa inhabit tectonically active areas of the southern hemisphere that have also experienced several glaciation events throughout the Plio-Pleistocene that are thought to have affected population structure dramatically in many taxa. Four highly divergent lineages estimated to have diverged since the late Miocene were revealed in each taxon, mirroring patterns in E. martini; however, there was no evidence for local geographical endemism, implying substantial range expansion post-diversification. The differences in pattern evident among the three related taxa were suggested to have been influenced by variation in the responses of closed forest habitat to climatic fluctuations during interglacial periods across the three landmasses. Phylogeographic structure in E. martini was resolved at a continental scale by expanding upon the sampling design of Krosch et al (2009) to encompass populations in southeast Queensland, New South Wales and Victoria. Patterns of phylogeographic structure were consistent with expectations and several previously unrecognised lineages were revealed from central- and southern Australia that were geographically endemic to closed forest refugia. Estimated divergence times were congruent with the timing of Plio-Pleistocene rainforest contractions across the east coast of Australia. This suggested that dispersal and gene flow of E. martini among isolated refugia was highly restricted and that this taxon was susceptible to the impacts of habitat change. Broader phylogenetic relationships among taxa considered to be members of this Gondwanan orthoclad group were resolved in order to test expected patterns of evolutionary affinities across the austral continents. The inferred phylogeny and estimated divergence times did not accord with expected patterns based on the geological sequence of break-up of the Gondwanan supercontinent and implied instead several transoceanic dispersal events post-vicariance. Difficulties in appropriate taxonomic sampling and accurate calibration of molecular phylogenies notwithstanding, the sampling regime implemented in the current study has been the most intensive yet performed for austral members of the Orthocladiinae and unsurprisingly has revealed both novel taxa and phylogenetic relationships within and among described genera. Several novel associations between life stages are made here for both described and previously unknown taxa. Investigating evolutionary relationships within and among members of this clade of proposed Gondwanan orthoclad taxa has demonstrated that a complex interaction between historical population fragmentation and dispersal at several levels of evolutionary scale has been important in driving diversification in this group. While interruptions to migration, colonisation and gene flow driven by population fragmentation have clearly contributed to the development and maintenance of much of the diversity present in this group, long-distance dispersal has also played a role in influencing diversification of continental biotas and facilitating gene flow among disjunct populations.
Resumo:
High Speed Rail (HSR) is rapidly gaining popularity worldwide as a safe and efficient transport option for long-distance travel. Designed to win market shares from air transport, HSR systems optimise their productivity between increasing speeds and station spacing to offer high quality service and gain ridership. Recent studies have investigated the effects that the deployment of HSR infrastructure has on spatial distribution and the economic development of cities and regions. Findings appear mostly positive at higher geographical scales, where HSR links connect major urban centres several hundred kilometres apart and already well positioned within a national or international context. Also, at the urban level, studies have shown regeneration and concentration effects around HSR station areas with positive returns on city’s image and economy. However, doubts persist on the effects of HSR at an intermediate scale, where the accessibility trade off on station spacing limits access to many small and medium agglomerations. Thereby, their ability to participate in the development opportunities facilitated by HSR infrastructure is significantly reduced. The locational advantages deriving from transport improvements appear contrasting especially in regions that tend to have a polycentric structure, where cities may present greater accessibility disparities between those served by HSR and those left behind. This thesis fits in this context where intermediate and regional cities do not directly enjoy the presence of an HSR station while having an existing or planned proximate HSR corridor. With the aim of understanding whether there might be a solution to this apparent incongruity, the research investigates strategies to integrate HSR accessibility at the regional level. While current literature recommends to commit with ancillary investments to the uplift of station areas and the renewal of feeder systems, I hypothesised the interoperability between the HSR and the conventional networks to explore the possibilities offered by mixed traffic and infrastructure sharing. Thus, I developed a methodology to quantify the exchange of benefits deriving from this synergistic interaction. In this way, it was possible to understand which level of service quality offered by alternative transit strategies best facilitates the distribution of accessibility benefits for areas far from actual HSR stations. Therefore, strategies were selected for their type of service capable of regional extensions and urban penetrations, while incorporating a combination of specific advantages (e.g. speed, sub-urbanity, capacity, frequency and automation) in order to emulate HSR quality with increasingly efficient services. The North-eastern Italian macro region was selected as case study to ground the research offering concurrently a peripheral polycentric metropolitan form, the presence of a planned HSR corridor with some portions of HSR infrastructure implementation, and the project to develop a suburban rail service extended regionally. Results show significant distributive potential, in terms of network effects produced in relation with HSR, in increasing proportions for all the strategies considered: a regional metro rail strategy (abbreviated RMR), a regional high speed rail strategy (abbreviated RHSR), a regional light rail transit (abbreviated LRT) strategy, and a non-stopping continuous railway system (abbreviated CRS) strategy. The provision of additional tools to value HSR infrastructure against its accessibility benefits and their regional distribution through alternative strategies beyond the actual HSR stations, would have great implications, both politically and technically, in moving towards new dimensions of HSR evaluation and development.
Resumo:
The ratite moa (Aves: Dinornithiformes) were a speciose group of massive graviportal avian herbivores that dominated the New Zealand (NZ) ecosystem until their extinction �600 years ago. The phylogeny and evolutionary history of this morphologically diverse order has remained controversial since their initial description in 1839. We synthesize mitochondrial phylogenetic information from 263 subfossil moa specimens from across NZ with morphological, ecological, and new geological data to create the first comprehensive phylogeny, taxonomy, and evolutionary timeframe for all of the species of an extinct order. We also present an important new geological/paleogeographical model of late Cenozoic NZ, which suggests that terrestrial biota on the North and South Island landmasses were isolated for most of the past 20–30 Ma. The data reveal that the patterns of genetic diversity within and between differentmoaclades reflect a complex history following a major marine transgression in the Oligocene, affected by marine barriers, tectonic activity, and glacial cycles. Surprisingly, the remarkable morphological radiation of moa appears to have occurred much more recently than previous early Miocene (ca. 15 Ma) estimates, and was coincident with the accelerated uplift of the Southern Alps just ca. 5–8.5 Ma. Together with recent fossil evidence, these data suggest that the recent evolutionary history of nearly all of the iconic NZ terrestrial biota occurred principally on just the South Island.
Resumo:
The Early–mid Cretaceous marks the confluence of three major continental-scale events in eastern Gondwana: (1) the emplacement of a Silicic Large Igneous Province (LIP) near the continental margin; (2) the volcaniclastic fill, transgression and regression of a major epicontinental seaway developed over at least a quarter of the Australian continent; and (3) epeirogenic uplift, exhumation and continental rupturing culminating in the opening of the Tasman Basin c. 84 Ma. The Whitsunday Silicic LIP event had widespread impact, producing both substantial extrusive volumes of dominantly silicic pyroclastic material and coeval first-cycle volcanogenic sediment that accumulated within many eastern Australian sedimentary basins, and principally in the Great Australian Basin system (>2 Mkm3 combined volume). The final pulse of volcanism and volcanogenic sedimentation at c. 105–95 Ma coincided with epicontinental seaway regression, which shows a lack of correspondence with the global sea-level curve, and alternatively records a wider, continental-scale effect of volcanism and rift tectonism. Widespread igneous underplating related to this LIP event is evident from high paleogeothermal gradients and regional hydrothermal fluid flow detectable in the shallow crust and over a broad region. Enhanced CO2 fluxing through sedimentary basins also records indirectly, large-scale, LIP-related mafic underplating. A discrete episode of rapid crustal cooling and exhumation began c. 100–90 Ma along the length of the eastern Australian margin, related to an enhanced phase of continental rifting that was largely amagmatic, and probably a switch from wide–more narrow rift modes. Along-margin variations in detachment fault architecture produced narrow (SE Australia) and wide continental margins with marginal, submerged continental plateaux (NE Australia). Long-lived NE-trending cross-orogen lineaments controlled the switch from narrow to wide continental margin geometries.
Resumo:
Strike-slip faults commonly display structurally complex areas of positive or negative topography. Understanding the development of such areas has important implications for earthquake studies and hydrocarbon exploration. Previous workers identified the key factors controlling the occurrence of both topographic modes and the related structural styles. Kinematic and stress boundary conditions are of first-order relevance. Surface mass transport and material properties affect fault network structure. Experiments demonstrate that dilatancy can generate positive topography even under simple-shear boundary conditions. Here, we use physical models with sand to show that the degree of compaction of the deformed rocks alone can determine the type of topography and related surface fault network structure in simple-shear settings. In our experiments, volume changes of ∼5% are sufficient to generate localized uplift or subsidence. We discuss scalability of model volume changes and fault network structure and show that our model fault zones satisfy geometrical similarity with natural flower structures. Our results imply that compaction may be an important factor in the development of topography and fault network structure along strike-slip faults in sedimentary basins.
Resumo:
Low cycle fatigue cracking of light gauge metal roofing was investigated by testing a number of two-span corrugated roofing assemblies with different spans and fastening systems under cyclic uplift wind loading. Fatigue results correlated quite well with the corresponding static results reported earlier, and revealed the dependence of fatigue behaviour on the fastening system used. A comparison was made of one fastening system with the other regarding fatigue performance .
Resumo:
When steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through/dimpling failures or pull-out failures occur prematurely at their screwed connections. During extreme wind events such as storms and hurricanes, these localized failures then lead to severe damage to buildings and their contents. An investigation was therefore carried out to study the failure that occurs when the screw fastener pulls out of the steel battens, purlins, or girts. Both two-span cladding tests and small-scale tests were conducted using a range of commonly used screw fasteners and steel battens, purlins, and girts. Experimental results showed that the current design formula may not be suitable unless a reduced capacity factor of 0.4 is used. Therefore, an improved design formula has been developed for pull-out failures in steel cladding systems. The formula takes into account thickness and ultimate tensile strength of steel, along with thread diameter and the pitch of screw fasteners, in order to model the pull-out behavior more accurately. This paper presents the details of this experimental investigation and its results.
Resumo:
Crest-fixed steel claddings made of thin, high strength steel often suffer from local pull-through failures at their screw connections during high wind events such as storms and hurricanes. Currently there aren't any adequate design provisions for these cladding systems except for the expensive testing provisions. Since the local pull-through failures in the less ductile steel claddings are initiated by transverse splitting at the fastener hole, analytical studies have not been able to determine the pull-through failure loads. Analytical studies could be used if a reliable splitting criterion is available. Therefore a series of two-span cladding tests was conducted on a range of crest-fixed steel cladding systems under simulated wind uplift loads. The strains in the sheeting around the critical fastener holes were measured until the pull-through failure. This paper presents the details of the experimental investigation and the results including a strain criterion for the local pull-through failure.
Resumo:
When crest-fixed thin steel roof cladding systems are subjected to wind uplift, local pull-through or pull-out failures occur prematurely at their screwed connections. During high wind events such as storms and cyclones these localised failures then lead to severe damage to buildings and their contents. In recent times, the use of thin steel battens/purlins has increased considerably. This has made the pull-out failures more critical in the design of steel cladding systems. Recent research has developed a design formula for the static pull-out strength of steel cladding systems. However, the effects of fluctuating wind uplift loading that occurs during high wind events are not known. Therefore a series of constant amplitude cyclic tests has been undertaken on connections between steel battens made of different thicknesses and steel grades, and screw fasteners with varying diameter and pitch. This paper presents the details of these cyclic tests and the results.
Resumo:
We report major and trace element composition, Sr–Nd isotopic and seismological data for a picrite–basalt–rhyolite suite from the northern Tarim uplift (NTU), northwest China. The samples were recovered from 13 boreholes at depths between 5,166 and 6,333 m. The picritic samples have high MgO (14.5–16.8 wt%, volatiles included) enriched in incompatible element and have high 87Sr/86Sr and low 143Nd/144Nd isotopic ratios (εNd (t) = −5.3; Sri = 0.707), resembling the Karoo high-Ti picrites. All the basaltic samples are enriched in TiO2 (2.1–3.2 wt%, volatiles free), have high FeOt abundances (11.27–15.75 wt%, volatiles free), are enriched in incompatible elements and have high Sr and low Nd isotopic ratios (Sri = 0.7049–0.7065; εNd (t) = −4.1 to −0.4). High Nb/La ratios (0.91–1.34) of basalts attest that they are mantle-derived magma with negligible crustal contamination. The rhyolite samples can be subdivided into two coeval groups with overlapping U–Pb zircon ages between 291 ± 4 and 272 ± 2 Ma. Group 1 rhyolites are enriched in Nb and Ta, have similar Nb/La, Nb/U, and Sr–Nd isotopic compositions to the associated basalts, implying that they are formed by fractional crystallization of the basalts. Group 2 rhyolites are depleted in Nb and Ta, have low Nb/La ratios, and have very high Sr and low Nd isotopic ratios, implying that crustal materials have been extensively, if not exclusively, involved in their source. The picrite–basalt–rhyolite suite from the NTU, together with Permian volcanic rocks from elsewhere Tarim basin, constitute a Large Igneous Province (LIP) that is characterized by large areal extent, rapid eruption, OIB-type chemical composition, and eruption of high temperature picritic magma. The Early Permian magmatism, which covered an area >300,000 km2, is therefore named the Tarim Flood Basalt.
Resumo:
Light gauge steel roofing systems made of thin profiled roof sheeting and battens are used commonly in residential, industrial and commercial buildings. Their critical design load combination is that due to wind uplift forces that occur during high wind events such as tropical cyclones and thunderstorms. However, premature local failures at their screw connections have been a concern for many decades since cyclone Tracy that devastated Darwin in 1974. Extensive research that followed cyclone Tracy on the pull-through and pull-out failures of roof sheeting to batten connections has significantly improved the safety of roof sheeting. However, this has made the batten to rafter/truss connection the weakest, and recent wind damage investigations have shown the failures of these connections and the resulting loss of entire roof structures. Therefore an experimental research program using both small scale and full scale air-box tests is currently under way to investigate the pull-through failures of thin-walled steel battens under high wind uplift forces. Tests have demonstrated that occurrence of pull-through failures in the bottom flanges of steel batttens and the need to develop simple test and design methods as a function of many critical parameters such as steel batten geometry, thickness and grade, screw fastener sizes and other fastening details. This paper presents the details of local failures that occur in light fauge roofing systems, a review of the current design and test methods for steel battens and associated short comings, and the test results obtained to date on pull-through failures of battens from small scale and full scale tests. Finally, it proposes the use of suitable small scale test methods that can be used by both researchers and manufacturers of such screw-fastened light gauge steel batten systems.
Resumo:
Profiled steel roof claddings in Australia and its neighbouring countries are commonly made of very thin high tensile steel and are crest-fixed intermittently with screw fasteners. The failure of the roof cladding systems was due to a local failure (dimpling of crests I pull-through) at the fasteners under wind uplift Cyclic wind uplift during cyclones causes fatigue cracking to occur at the fastener holes which leads to pull-through failures at lower load levels. At present the design of these claddings is entirely based on testing. In order to improve the understanding of the behaviour and the design and test methods of these claddings under wind uplift loading during storms and cyclones, a detailed investigation consisting of finite element analyses, static and fatigue experiments and cyclonic wind modelling was carried out on two-span roofing assemblies of three common roofing profiles. This paper presents the details of this investigation and its important results.
Resumo:
When thin steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through or pull-out failures occur prematurely at their screwed connections. During high wind events such as stom1s and cyclones, these localized failures then lead to severe damage to buildings and their contents. In recent times, the use of thin steel battens, purlins and girts has increased considerably, which has made the pull-out failures more critical in the design of steel cladding systems. An experimental investigation was therefore carried out to study the pull-out failure using both static and cyclic tests for a range of commonly used screw fasteners and steel battens, purlins and girts. This paper presents the details ofthis experimental investigation and its results.