163 resultados para turnover rate
Comparison of emission rate values for odour and odorous chemicals derived from two sampling devices
Resumo:
Field and laboratory measurements identified a complex relationship between odour emission rates provided by the US EPA dynamic emission chamber and the University of New South Wales wind tunnel. Using a range of model compounds in an aqueous odour source, we demonstrate that emission rates derived from the wind tunnel and flux chamber are a function of the solubility of the materials being emitted, the concentrations of the materials within the liquid; and the aerodynamic conditions within the device – either velocity in the wind tunnel, or flushing rate for the flux chamber. The ratio of wind tunnel to flux chamber odour emission rates (OU m-2 s) ranged from about 60:1 to 112:1. The emission rates of the model odorants varied from about 40:1 to over 600:1. These results may provide, for the first time, a basis for the development of a model allowing an odour emission rate derived from either device to be used for odour dispersion modelling.
Resumo:
The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.
Resumo:
This paper proposes a novel relative entropy rate (RER) based approach for multiple HMM (MHMM) approximation of a class of discrete-time uncertain processes. Under different uncertainty assumptions, the model design problem is posed either as a min-max optimisation problem or stochastic minimisation problem on the RER between joint laws describing the state and output processes (rather than the more usual RER between output processes). A suitable filter is proposed for which performance results are established which bound conditional mean estimation performance and show that estimation performance improves as the RER is reduced. These filter consistency and convergence bounds are the first results characterising multiple HMM approximation performance and suggest that joint RER concepts provide a useful model selection criteria. The proposed model design process and MHMM filter are demonstrated on an important image processing dim-target detection problem.
Resumo:
CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of a clay mineral such as sepiolite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal changes in the sepiolite as the sepiolite is converted to an anhydride. In the dynamic experiment two dehydration steps are observed over the ~20-170 and 170-350°C temperature range. In the dynamic experiment three dehydroxylation steps are observed over the temperature ranges 201-337, 337-638 and 638-982°C. The CRTA technology enables the separation of the thermal decomposition steps.
Resumo:
Australia is going through a major reform of consumer credit regulation, with the implementation of a proposal to transfer regulatory responsibility from the State and Territory Governments to the Commonwealth Government. While the broad policy approach is supported, the reform process has missed a significant opportunity to engage directly with issues of financial exclusion and with the potential role of regulation to reduce financial exclusion. The imposition of an interest rate cap can limit the impact of financial exclusion. However, the future of the existing interest rate caps is uncertain, given the diversity of approaches, and the heated debate that surrounds this issue. In the absence of support for regulatory initiatives to increase the availability of low cost, small loans, permitting regulatory diversity on this issue of interest rate caps, within an otherwise centralised regulatory framework., can minimise the impact of financial exclusion on consumers.
Resumo:
Controlled rate thermal analysis (CRTA) technology offers better resolution and a more detailed interpretation of the decomposition processes of a clay mineral such as sepiolite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal changes in the sepiolite as the sepiolite is converted to an anhydride. In the dynamic experiment two dehydration steps are observed over the *20–170 and 170–350 �C temperature range. In the dynamic experiment three dehydroxylation steps are observed over the temperature ranges 201–337, 337–638 and 638–982 �C. The CRTA technology enables the separation of the thermal decomposition steps.
Resumo:
Professional prac− tice guidelines for endoscope reprocessing re− commend reprocessing endoscopes between each case and proper storage following repro− cessing after the last case of the list. There is lim− ited empirical evidence to support the efficacy of endoscope reprocessing prior to use in the first case of the day; however, internationally, many guidelines continue to recommend this practice. The aim of this study is to estimate a safe shelf life for flexible endoscopes in a high−turnover gastroenterology unit. Materials and methods: In a prospective obser− vational study, all flexible endoscopes in active service during the 3−week study period were mi− crobiologically sampled prior to reprocessing be− fore the first case of the day (n = 200). The main outcome variables were culture status, organism cultured, and shelf life. Results: Among the total number of useable samples (n = 194), the overall contamination rate was 15.5 %, with a pathogenic contamination rate of 0.5 %. Mean time between last case one day and reprocessing before the first case on the next day (that is, shelf life) was 37.62 h (SD 36.47). Median shelf life was 18.8 h (range 5.27± 165.35 h). The most frequently identified organ− ism was coagulase−negative Staphylococcus, an environmental nonpathogenic organism. Conclusions: When processed according to es− tablished guidelines, flexible endoscopes remain free from pathogenic organisms between last case and next day first case use. Significant re− ductions in the expenditure of time and resources on reprocessing endoscopes have the potential to reduce the restraints experienced by high−turnover endoscopy units and improve ser− vice delivery.
Resumo:
Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart, by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computer-based intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are nonlinear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of nonlinear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and seven classes of arrhythmia. We present some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. We also extracted features from the HOS and performed an analysis of variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test.
Resumo:
This paper presents the findings of an investigation into the rate-limiting mechanism for the heterogeneous burning in oxygen under normal gravity and microgravity of cylindrical iron rods. The original objective of the work was to determine why the observed melting rate for burning 3.2-mm diameter iron rods is significantly higher in microgravity than in normal gravity. This work, however, also provided fundamental insight into the rate-limiting mechanism for heterogeneous burning. The paper includes a summary of normal-gravity and microgravity experimental results, heat transfer analysis and post-test microanalysis of quenched samples. These results are then used to show that heat transfer across the solid/liquid interface is the rate-limiting mechanism for melting and burning, limited by the interfacial surface area between the molten drop and solid rod. In normal gravity, the work improves the understanding of trends reported during standard flammability testing for metallic materials, such as variations in melting rates between test specimens with the same cross-sectional area but different crosssectional shape. The work also provides insight into the effects of configuration and orientation, leading to an improved application of standard test results in the design of oxygen system components. For microgravity applications, the work enables the development of improved methods for lower cost metallic material flammability testing programs. In these ways, the work provides fundamental insight into the heterogeneous burning process and contributes to improved fire safety for oxygen systems in applications involving both normal-gravity and microgravity environments.
Resumo:
This paper presents a proposed qualitative framework to discuss the heterogeneous burning of metallic materials, through parameters and factors that influence the melting rate of the solid metallic fuel (either in a standard test or in service). During burning, the melting rate is related to the burning rate and is therefore an important parameter for describing and understanding the burning process, especially since the melting rate is commonly recorded during standard flammability testing for metallic materials and is incorporated into many relative flammability ranking schemes. However, whilst the factors that influence melting rate (such as oxygen pressure or specimen diameter) have been well characterized, there is a need for an improved understanding of how these parameters interact as part of the overall melting and burning of the system. Proposed here is the ‘Melting Rate Triangle’, which aims to provide this focus through a conceptual framework for understanding how the melting rate (of solid fuel) is determined and regulated during heterogeneous burning. In the paper, the proposed conceptual model is shown to be both (a) consistent with known trends and previously observed results, and (b)capable of being expanded to incorporate new data. Also shown are examples of how the Melting Rate Triangle can improve the interpretation of flammability test results. Slusser and Miller previously published an ‘Extended Fire Triangle’ as a useful conceptual model of ignition and the factors affecting ignition, providing industry with a framework for discussion. In this paper it is shown that a ‘Melting Rate Triangle’ provides a similar qualitative framework for burning, leading to an improved understanding of the factors affecting fire propagation and extinguishment.
Resumo:
The study described in this paper developed a model of animal movement, which explicitly recognised each individual as the central unit of measure. The model was developed by learning from a real dataset that measured and calculated, for individual cows in a herd, their linear and angular positions and directional and angular speeds. Two learning algorithms were implemented: a Hidden Markov model (HMM) and a long-term prediction algorithm. It is shown that a HMM can be used to describe the animal's movement and state transition behaviour within several “stay” areas where cows remained for long periods. Model parameters were estimated for hidden behaviour states such as relocating, foraging and bedding. For cows’ movement between the “stay” areas a long-term prediction algorithm was implemented. By combining these two algorithms it was possible to develop a successful model, which achieved similar results to the animal behaviour data collected. This modelling methodology could easily be applied to interactions of other animal species.
Resumo:
This paper introduces an energy-efficient Rate Adaptive MAC (RA-MAC) protocol for long-lived Wireless Sensor Networks (WSN). Previous research shows that the dynamic and lossy nature of wireless communication is one of the major challenges to reliable data delivery in a WSN. RA-MAC achieves high link reliability in such situations by dynamically trading off radio bit rate for signal processing gain. This extra gain reduces the packet loss rate which results in lower energy expenditure by reducing the number of retransmissions. RA-MAC selects the optimal data rate based on channel conditions with the aim of minimizing energy consumption. We have implemented RA-MAC in TinyOS on an off-the-shelf sensor platform (TinyNode), and evaluated its performance by comparing RA-MAC with state-ofthe- art WSN MAC protocol (SCP-MAC) by experiments.
Resumo:
High-rate flooding attacks (aka Distributed Denial of Service or DDoS attacks) continue to constitute a pernicious threat within the Internet domain. In this work we demonstrate how using packet source IP addresses coupled with a change-point analysis of the rate of arrival of new IP addresses may be sufficient to detect the onset of a high-rate flooding attack. Importantly, minimizing the number of features to be examined, directly addresses the issue of scalability of the detection process to higher network speeds. Using a proof of concept implementation we have shown how pre-onset IP addresses can be efficiently represented using a bit vector and used to modify a “white list” filter in a firewall as part of the mitigation strategy.