38 resultados para transparent ceramic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium silicate (CaSiO3, CS) ceramics have received significant attention for application in bone regeneration due to their excellent in vitro apatite-mineralization ability; however, how to prepare porous CS scaffolds with a controllable pore structure for bone tissue engineering still remains a challenge. Conventional methods could not efficiently control the pore structure and mechanical strength of CS scaffolds, resulting in unstable in vivo osteogenesis. The aim of this study is to set out to solve these problems by applying a modified 3D-printing method to prepare highly uniform CS scaffolds with controllable pore structure and improved mechanical strength. The in vivo osteogenesis of the prepared 3D-printed CS scaffolds was further investigated by implanting them in the femur defects of rats. The results show that the CS scaffolds prepared by the modified 3D-printing method have uniform scaffold morphology. The pore size and pore structure of CS scaffolds can be efficiently adjusted. The compressive strength of 3D-printed CS scaffolds is around 120 times that of conventional polyurethane templated CS scaffolds. 3D-Printed CS scaffolds possess excellent apatite-mineralization ability in simulated body fluids. Micro-CT analysis has shown that 3D-printed CS scaffolds play an important role in assisting the regeneration of bone defects in vivo. The healing level of bone defects implanted by 3D-printed CS scaffolds is obviously higher than that of 3D-printed b-tricalcium phosphate (b-TCP) scaffolds at both 4 and 8 weeks. Hematoxylin and eosin (H&E) staining shows that 3D-printed CS scaffolds induce higher quality of the newly formed bone than 3D-printed b-TCP scaffolds. Immunohistochemical analyses have further shown that stronger expression of human type I collagen (COL1) and alkaline phosphate (ALP) in the bone matrix occurs in the 3D-printed CS scaffolds than in the 3D-printed b-TCP scaffolds. Considering these important advantages, such as controllable structure architecture, significant improvement in mechanical strength, excellent in vivo osteogenesis and since there is no need for second-time sintering, it is indicated that the prepared 3D-printed CS scaffolds are a promising material for application in bone regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In late 1993 the Federal Government required the Industry Commission to inquire into charitable organisations. We have previously raised issues about the scope and nature of the inquiry process. These issues are: - the appropriateness of the Commission to undertake the inquiry, - the limited time span given the breadth of the inquiry, - and the non-explicit disclosure of the intellectual framework and methodology to be employed in the inquiry.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to rigorously test emerging applications using prototypes and pilot designs, high temperature superconductor (HTS) materials must be fabricated into a variety of shapes in an economical manner. We have developed a simple, economical, ceramic slip-casting approach to form complex shaped monolithic HTS articles for which high bulk density has been achieved. The sintered articles exhibit good Meissner signal and consist of phase-pure HTSC phase. A low transport critical current density is observed and is explained on the basis of densification and grain growth. © 1995 The Metallurgical of Society of AIME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creating an authentic assessment which at once assesses competencies, scene management, communication and overall patient care is challenging in the competitive tertiary education market. Increasing student numbers and the cost of evaluating scenario based competencies serve to ensure the need for consistent objectivity and need for timely feedback to students on their performance. Objective structured clinical examination (OSCE) is currently the most flexible approach to competency based formative and summative assessment and widely used within paramedic degree programs. Students are understandably compelled to perform well and can be frustrated by not receiving timely and appropriate feedback. Increasingly a number of products aimed at providing a more efficient and paperless approach have begun to enter the market. These products, it is suggested are aimed at medicine programs and not at allied health professions and limited to one operating system and therefore ignore issues surrounding equity and accessibility. OSCE Online aims to address this gap in the market and is tailored to these disciplines. The application will provide a service that can be both tailored and standardised from a pre-written bank, depending upon requirement to fit around the needs of clinical competency assessment. Delivering authentic assessments to address student milestones in their training to become paramedics is the cornerstone of OSCE Online. By not being restricted to a specific device it will address issues of functionality, adaptability, accessibility, authenticity and importantly: transparency and accountability by producing contemporaneous data allowing issues to be easily identified and rectified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma-assisted magnetron sputtering with varying ambient conditions has been utilised to deposit Al-doped ZnO (AZO) transparent conductive thin films directly onto a glass substrate at a low substrate temperature of 400 °C. The effects of hydrogen addition on electrical, optical and structural properties of the deposited AZO films have been investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), Hall effect measurements and UV–vis optical transmission spectroscopy. The results indicate that hydrogen addition has a remarkable effect on the film transparency and conductivity with the greatest effects observed with a hydrogen flux of approximately 3 sccm. It has been demonstrated that the conductivity and the average transmittance in the visible range can increase simultaneously contrary to the effects observed by other authors. In addition, hydrogen incorporation further leads to the absorption edge shifting to a shorter wavelength due to the Burstein–Moss effect. These results are of particular relevance to the development of the next generation of optoelectronic and photovoltaic devices based on highly transparent conducting oxides with controllable electronic and optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al-doped zinc oxide (AZO) thin films are deposited onto glass substrates using radio-frequency reactive magnetron sputtering and the improvements in their physical properties by post-synthesis thermal treatment are reported. X-ray diffraction spectra show that the structure of films can be controlled by adjusting the annealing temperatures, with the best crystallinity obtained at 400°C under a nitrogen atmosphere. These films exhibit improved quality and better optical transmittance as indicated by the UV-Vis spectra. Furthermore, the sheet resistivity is found to decrease from 1.87 × 10-3 to 5.63 × 10-4Ω⋅cm and the carrier mobility increases from 6.47 to 13.43 cm2 ⋅ V-1 ⋅ s-1 at the optimal annealing temperature. Our results demonstrate a simple yet effective way in controlling the structural, optical and electrical properties of AZO thin films, which is important for solar cell applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optically transparent, highly oriented nanocrystalline AlN(002) films have been synthesized using a hybrid plasma enhanced chemical vapor deposition and plasma-assisted radio frequency (rf) magnetron sputtering process in reactive Ar+ N2 and Ar+ N2 + H2 gas mixtures at a low Si(111)/glass substrate temperature of 350 °C. The process conditions, such as the sputtering pressure, rf power, substrate temperature, and N2 concentration were optimized to achieve the desired structural, compositional, and optical characteristics. X-ray diffractometry reveals the formation of highly c -oriented AlN films at a sputtering pressure of 0.8 Pa. Field emission scanning electron microscopy suggests the uniform distribution of AlN grains over large surface areas and also the existence of highly oriented in the (002) direction columnar structures of a typical length ∼100-500 nm with an aspect ratio of ∼7-15. X-ray photoelectron and energy dispersive x-ray spectroscopy suggest that films deposited at a rf power of 400 W feature a chemically pure and near stoichiometric AlN. The bonding states of the AlN films have been confirmed by Raman and Fourier transform infrared spectroscopy showing strong E2 (high) and E1 transverse optical phonon modes. Hydrogenated AlN films feature an excellent optical transmittance of ∼80% in the visible region of the spectrum, promising for advanced optical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.