263 resultados para translation tool
Resumo:
The design of a building is a complicated process, having to formulate diverse components through unique tasks involving different personalities and organisations in order to satisfy multi-faceted client requirements. To do this successfully, the project team must encapsulate an integrated design that accommodates various social, economic and legislative factors. Therefore, in this era of increasing global competition integrated design has been increasingly recognised as a solution to deliver value to clients.----- The ‘From 3D to nD modelling’ project at the University of Salford aims to support integrated design; to enable and equip the design and construction industry with a tool that allows users to create, share, contemplate and apply knowledge from multiple perspectives of user requirements (accessibility, maintainability, sustainability, acoustics, crime, energy simulation, scheduling, costing etc.). Thus taking the concept of 3-dimensional computer modelling of the built environment to an almost infinite number of dimensions, to cope with whole-life construction and asset management issues in the design of modern buildings. This paper reports on the development of a vision for how integrated environments that will allow nD-enabled construction and asset management to be undertaken. The project is funded by a four-year platform grant from the Engineering and Physical Sciences Research Council (EPSRC) in the UK; thus awarded to a multi-disciplinary research team, to enable flexibility in the research strategy and to produce leading innovation. This paper reports on the development of a business process and IT vision for how integrated environments will allow nD-enabled construction and asset management to be undertaken. It further develops many of the key issues of a future vision arising from previous CIB W78 conferences.
The STRATIFY tool and clinical judgment were poor predictors of falling in an acute hospital setting
Resumo:
Objective: To compare the effectiveness of the STRATIFY falls tool with nurses’ clinical judgments in predicting patient falls. Study Design and Setting: A prospective cohort study was conducted among the inpatients of an acute tertiary hospital. Participants were patients over 65 years of age admitted to any hospital unit. Sensitivity, specificity, and positive predictive value (PPV) and negative predictive values (NPV) of the instrument and nurses’ clinical judgments in predicting falls were calculated. Results: Seven hundred and eighty-eight patients were screened and followed up during the study period. The fall prevalence was 9.2%. Of the 335 patients classified as being ‘‘at risk’’ for falling using the STRATIFY tool, 59 (17.6%) did sustain a fall (sensitivity50.82, specificity50.61, PPV50.18, NPV50.97). Nurses judged that 501 patients were at risk of falling and, of these, 60 (12.0%) fell (sensitivity50.84, specificity50.38, PPV50.12, NPV50.96). The STRATIFY tool correctly identified significantly more patients as either fallers or nonfallers than the nurses (P50.027). Conclusion: Considering the poor specificity and high rates of false-positive results for both the STRATIFY tool and nurses’ clinical judgments, we conclude that neither of these approaches are useful for screening of falls in acute hospital settings.
Resumo:
An important aspect of designing any product is validation. Virtual design process (VDP) is an alternative to hardware prototyping in which analysis of designs can be done without manufacturing physical samples. In recent years, VDP have been generated either for animation or filming applications. This paper proposes a virtual reality design process model on one of the applications when used as a validation tool. This technique is used to generate a complete design guideline and validation tool of product design. To support the design process of a product, a virtual environment and VDP method were developed that supports validation and an initial design cycle performed by a designer. The product model car carrier is used as illustration for which virtual design was generated. The loading and unloading sequence of the model for the prototype was generated using automated reasoning techniques and was completed by interactively animating the product in the virtual environment before complete design was built. By using the VDP process critical issues like loading, unloading, Australian Design rules (ADR) and clearance analysis were done. The process would save time, money in physical sampling and to large extent in complete math generation. Since only schematic models are required, it saves time in math modelling and handling of bigger size assemblies due to complexity of the models. This extension of VDP process for design evaluation is unique and was developed, implemented successfully. In this paper a Toll logistics and J Smith and Sons car carrier which is developed under author’s responsibility has been used to illustrate our approach of generating design validation via VDP.
Environmental assessment for commercial buildings: Stakeholder requirements and tool characteristics
Resumo:
The Cooperative Research Centre for Construction Innovation (CRC CI) is a national research, development and implementation centre focused on the needs of the property, design, construction and facility management sectors. Established in 2001 and headquartered at Queensland University of Technology as an unincorporated joint venture under the Australian Government's Cooperative Research Program, the CRC CI is developing key technologies, tools and management systems to improve the effectiveness of the construction industry. The CRC CI is a seven year project funded by a Commonwealth grant and industry, research and other government support. More than 150 researchers and an alliance of 19 leading partner organisations are involved in and support the activities of the CRC CI
Resumo:
Current software tools for documenting and developing models of buildings focus on supporting a single user who is a specialist in the specific software used within their own discipline. Extensions to these tools for use by teams maintain the single discipline view and focus on version and file management. There is a perceived need in industry to have tools that specifically support collaboration among individuals from multiple disciplines with both a graphical representation of the design and a persistent data model. This project involves the development of a prototype of such a software tool. We have identified multi-user 3D virtual worlds as an appropriate software base for the development of a collaborative design tool. These worlds are inherently multi-user and therefore directly support collaboration through a sense of awareness of others in the virtual world, their location within the world, and provide various channels for direct and indirect communication. Such software platforms also provide a 3D building and modelling environment that can be adapted to the needs of the building and construction industry. DesignWorld is a prototype system for collaborative design developed by augmenting the Second Life (SL) commercial software platform1 with a collection web-based tools for communication and design. Agents manage communication between the 3D virtual world and the web-based tools. In addition, agents maintain a persistent external model of designs in the 3D world which can be augmented with data such as relationships, disciplines and versions not usually associated with 3D virtual worlds but required in design scenarios.
Resumo:
Durability issues of reinforced concrete construction cost millions of dollars in repair or demolition. Identification of the causes of degradation and a prediction of service life based on experience, judgement and local knowledge has limitations in addressing all the associated issues. The objective of this CRC CI research project is to develop a tool that will assist in the interpretation of the symptoms of degradation of concrete structures, estimate residual capacity and recommend cost effective solutions. This report is a documentation of the research undertaken in connection with this project. The primary focus of this research is centred on the case studies provided by Queensland Department of Main Roads (QDMR) and Brisbane City Council (BCC). These organisations are endowed with the responsibility of managing a huge volume of bridge infrastructure in the state of Queensland, Australia. The main issue to be addressed in managing these structures is the deterioration of bridge stock leading to a reduction in service life. Other issues such as political backlash, public inconvenience, approach land acquisitions are crucial but are not within the scope of this project. It is to be noted that deterioration is accentuated by aggressive environments such as salt water, acidic or sodic soils. Carse, 2005, has noted that the road authorities need to invest their first dollars in understanding their local concretes and optimising the durability performance of structures and then look at potential remedial strategies.
Resumo:
The road and transport industry in Australia and overseas has come a long way to understanding the impact of road traffic noise on the urban environment. Most road authorities now have guidelines to help assess and manage the impact of road traffic noise on noise-sensitive areas and development. While several economic studies across Australia and overseas have tried to value the impact of noise on property prices, decision-makers investing in road traffic noise management strategies have relatively limited historic data and case studies to go on. The perceived success of a noise management strategy currently relies largely on community expectations at a given time, and is not necessarily based on the analysis of the costs and benefits, or the long-term viability and value to the community of the proposed treatment options. With changing trends in urban design, it is essential that the 'whole-of-life' costs and benefits of noise ameliorative treatment options and strategies be identified and made available for decisionmakers in future investment considerations. For this reason, CRC for Construction Innovation Australia funded a research project, Noise Management in Urban Environments to help decision-makers with future road traffic noise management investment decisions. RMIT University and the Queensland Department of Main Roads (QDMR) have conducted the research work, in collaboration with the Queensland Department of Public Works, ARUP Pty Ltd, and the Queensland University of Technology. The research has formed the basis for the development of a decision-support software tool, and helped collate technical and costing data for known noise amelioration treatment options. We intend that the decision support software tool (DST) should help an investment decision-maker to be better informed of suitable noise ameliorative treatment options on a project-by-project basis and identify likely costs and benefits associated with each of those options. This handbook has been prepared as a procedural guide for conducting a comparative assessment of noise ameliorative options. The handbook outlines the methodology and assumptions adopted in the decision-support framework for the investment decision-maker and user of the DST. The DST has been developed to provide an integrated user-friendly interface between road traffic noise modelling software, the relevant assessment criteria and the options analysis process. A user guide for the DST is incorporated in this handbook.