615 resultados para surface stress


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atherosclerosis plaque rupture has been considered to be a mechanical failure of the thin fibrous cap, resulted from extreme plaque stress. Plaque stress was affected by many factors from morphological features to biological abnormalities. In this study, geometrical factors (curvedness, fibrous cap thickness) were studied on assessing plaque vulnerability in comparison with stress analysis results obtained by fluid structure interaction from 20 human carotid atherosclerosis plaques. The results show that plaque surface curvedness could contribute to extreme stress level, especially in plaque shoulder region. General plaque stress distribution could be predicted by fibrous cap thickness and curvedness with multi-regression model. With more features included in the regression model, plaque stress could be easily calculated and used to assess plaque vulnerability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The drive to replace lead (Pb) from electronics has led to the replacement of tin (Sn) alloys as the terminal plating for electronic devices. However, the deposition of Sn based alloys as the component surface finish tends to induce Sn whisker that causes unintended electric shorts when the conductive whiskers grow across to the adjacent conductor. Internal stress is considered as the driving force that causes the growth of Sn whiskers. In this study, stress type of elevated temperature/ humidity exposure at 55C/85%RH with the storage for up to 24 months was conducted to define the acceleration factor in samples with deposition of immersion Sn plating and Sn solder dipping. The addition of Nickel (Ni) under-layer was also applied to examine the correlation to field conditions. The results showed that the whisker length increased in high humidity irrespective of the deposition methods. It was also shown that pure Sn solder dipping mitigated the whisker growth but does not completely prevent it when alloying Sn with 0.4%wtCu. Additionally, Ni under-layer was indicated to be more efficient in mitigating the growth of whisker by prolonging the incubation time for whisker formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the surface profiles of a strip after rigid bodies with serrated (saw-teeth) surfaces indent the strip and are subsequently removed. Plane-strain conditions are assumed. This has application in roughness transfer of final metal forming process. The effects of the semi-angle of the teeth, the depth of indentation and the friction on the contact surface on the profile are considered.