79 resultados para stress strain relations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanical properties have an important role in the fire safety design of cold-formed steel structures due to the rapid reduction in mechanical properties such as yield strength and elastic modulus under fire conditions and associated reduction to the load carrying capacities. Hence there is a need to fully understand the deterioration characteristics of yield strength and elastic modulus of cold-formed steels at elevated temperatures. Although past research has produced useful experimental data on the mechanical properties of cold-formed steels at elevated temperatures, such data do not yet cover different cold-formed steel grades and thicknesses. Therefore, an experimental study was undertaken to investigate the elevated temperature mechanical properties of two low and high strength steels with two thicknesses that are commonly used in Australia. Tensile coupon tests were undertaken using a steady state test method for temperatures in the range 20–700 °C. Test results were compared with the currently available reduction factors for yield strength and elastic modulus, and stressstrain curves, based on which further improvements were made. For this purpose, test results of many other cold-formed steels were also used based on other similar studies undertaken at the Queensland University of Technology. Improved equations were developed to predict the yield strength and elastic modulus reduction factors and stressstrain curves of a range of cold-formed steel grades and thicknesses used in Australia. This paper presents the results of this experimental study, comparisons with the results of past research and steel design standards, and the new predictive equations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Total hip arthroplasty carried out using cemented modular-neck implants provides the surgeon with greater intra-operative flexibility and allows more controlled stem positioning. Methods In this study, finite element models of a whole femur implanted with either the Exeter or with a new cemented modular-neck total hip arthroplasty (separate, neck and stem components) were developed. The changes in bone and cement mantle stress/strain were assessed for varying amounts of neck offset and version angle for the modular-neck device for two simulated physiological load cases: walking and stair climbing. Since the Exeter is the gold standard for polished cemented total hip arthroplasty stem design, bone and cement mantle stresses/strains in the modular-neck finite element models were compared with finite element results for the Exeter. Findings For the two physiological load cases, stresses and strains in the bone and cement mantle were similar for all modular-neck geometries. These results were comparable to the bone and cement mechanics surrounding the Exeter. These findings suggest that the Exeter and the modular neck device distribute stress to the surrounding bone and cement in a similar manner. Interpretation It is anticipated that the modular-neck device will have a similar short-term clinical performance to that of the Exeter, with the additional advantages of increased modularity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanical damages such as bruising, collision and impact during food processing stages diminish quality and quantity of productions as well as efficiency of operations. Studying mechanical characteristics of food materials will help to enhance current industrial practices. Mechanical properties of fruits and vegetables describe how these materials behave under loading in real industrial operations. Optimizing and designing more efficient equipments require accurate and precise information of tissue behaviours. FE modelling of food industrial processes is an effective method of studying interrelation of variables during mechanical operation. In this study, empirical investigation has been done on mechanical properties of pumpkin peel. The test was a part of FE modelling and simulation of mechanical peeling stage of tough skinned vegetables. The compression test has been conducted on Jap variety of pumpkin. Additionally, stress strain curve, bio-yield and toughness of pumpkin skin have been calculated. The required energy for reaching bio-yield point was 493.75, 507.71 and 451.71 N.mm for 1.25, 10 and 20 mm/min loading speed respectively. Average value of force in bio-yield point for pumpkin peel was 310 N.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new cold-formed hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. In addition to this unique geometry, the LSB sections also have unique characteristics relating to their stress-strain curves, residual stresses, initial geometric imperfections and hollow flanges that are not encountered in conventional hot-rolled and cold-formed steel channel sections. An experimental study including 20 section moment capacity tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. The presence of inelastic reserve bending capacity in these beams was investigated in detail although the current design rules generally limit the section moment capacities of cold-formed steel members to their first yield moments. The ultimate moment capacities from the tests were compared with the section moment capacities predicted by the current cold-formed and hot-rolled steel design standards. It was found that compact and non-compact LSB sections have greater moment capacities than their first yield moments. The current cold-formed steel design standards were found to be conservative in predicting the section moment capacities of compact and non-compact LSB sections while the hot-rolled steel design standards were able to better predict them. This paper has shown that suitable modifications are needed to the current design rules to allow the inclusion of available inelastic bending capacities of LSBs in design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract: This paper presents the details of a study into the behaviour and moment capacities of cold-formed steel lipped channel beams (LCB) subject to lateral-torsional buckling at elevated temperatures. It was based on a validated numerical model of a simply supported and laterally unrestrained LCB subjected to a uniform moment. The ultimate moment capacities from this study were compared with the predicted values using ambient and fire design methods. This study showed that the lateral torsional buckling capacity is strongly influenced by the level of non-linearity in the stress-strain curves of steel at elevated temperatures. Hence most of the current design methods based on a single buckling curve were not adequate to determine the moment capacities. This paper proposes a new design method for the cold-formed steel LCBs subject lateral-torsional buckling at elevated temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peeling is an essential phase of post harvesting and processing industry; however undesirable processing losses are unavoidable and always have been the main concern of food processing sector. There are three methods of peeling fruits and vegetables including mechanical, chemical and thermal, depending on the class and type of fruit. By comparison, the mechanical methods are the most preferred; mechanical peeling methods do not create any harmful effects on the tissue and they keep edible portions of produce fresh. The main disadvantage of mechanical peeling is the rate of material loss and deformations. Obviously reducing material losses and increasing the quality of the process has a direct effect on the whole efficiency of food processing industry, this needs more study on technological aspects of these operations. In order to enhance the effectiveness of food industrial practices it is essential to have a clear understanding of material properties and behaviour of tissues under industrial processes. This paper presents the scheme of research that seeks to examine tissue damage of tough skinned vegetables under mechanical peeling process by developing a novel FE model of the process using explicit dynamic finite element analysis approach. A computer model of mechanical peeling process will be developed in this study to stimulate the energy consumption and stress strain interactions of cutter and tissue. The available Finite Element softwares and methods will be applied to establish the model. Improving the knowledge of interactions and involves variables in food operation particularly in peeling process is the main objectives of the proposed study. Understanding of these interrelationships will help researchers and designer of food processing equipments to develop new and more efficient technologies. Presented work intends to review available literature and previous works has been done in this area of research and identify current gap in modelling and simulation of food processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding of mechanical behaviour of food particles will provide researchers and designers essential knowledge to improve and optimise current food industrial technologies. Understanding of tissue behaviours will lead to the reduction of material loss and enhance energy efficiency during processing operations. Although, there are some previous studies on properties of fruits and vegetables however, tissue behaviour under different processing operations will be different. The presented paper is a part of FE modelling and simulation of tissue damage during mechanical peeling of tough skinned vegetables. In this study indentation test was performed on peeled and unpeeled samples at loading rate of 20 mm/min for peel, flesh and unpeeled samples. Consequently, force deformation and stress and strain of samples were calculated. The toughness of the tissue also has been calculated and compared with the previous results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cold-formed steel beams are increasingly used as floor joists and bearers in buildings and often their behaviour and moment capacities are influenced by lateral-torsional buckling. With increasing usage of cold-formed steel beams their fire safety design has become an important issue. Fire design rules are commonly based on past research on hot-rolled steel beams. Hence a detailed parametric study was undertaken using validated finite element models to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending at uniform elevated temperatures. The moment capacity results were compared with the predictions from the available ambient temperature and fire design rules and suitable recommendations were made. European fire design rules were found to be over-conservative while the ambient temperature design rules could not be used based on single buckling curve. Hence a new design method was proposed that includes the important non-linear stress-strain characteristics observed for cold-formed steels at elevated temperatures. Comparison with numerical moment capacities demonstrated the accuracy of the new design method. This paper presents the details of the parametric study, comparisons with current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams at elevated temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Understanding the mechanical properties of tendon is an important step to guiding the process of improving athletic performance, predicting injury and treating tendinopathies. The speed of sound in a medium is governed by the bulk modulus and density for fluids and isotropic materials. However, for tendon,which is a structural composite of fluid and collagen, there is some anisotropy requiring an adjustment for Poisson’s ratio. In this paper, these relationships are explored and modelled using data collected, in vivo, on human Achilles tendon. Estimates for elastic modulus and hysteresis based on speed of sound data are then compared against published values from in vitro mechanical tests. Methods: Measurements using clinical ultrasound imaging, inverse dynamics and acoustic transmission techniques were used to determine dimensions, loading conditions and longitudinal speed of sound for the Achilles tendon during a series of isometric plantar flexion exercises against body weight. Upper and lower bounds for speed of sound versus tensile stress in the tendon were then modelled and estimates derived for elastic modulus and hysteresis. Results: Axial speed of sound varied between 1850 to 2090 m.s−1 with a non-linear, asymptotic dependency on the level of tensile stress in the tendon 5–35 MPa. Estimates derived for the elastic modulus ranged between 1–2 GPa. Hysteresis derived from models of the stress-strain relationship, ranged from 3–11%. These values agree closely with those previously reported from direct measurements obtained via in vitro mechanical tensile tests on major weight bearing tendons. Discussion: There is sufficiently good agreement between these indirect (speed of sound derived) and direct (mechanical tensile test derived) measures of tendon mechanical properties to validate the use of this non-invasive acoustic transmission technique. This non-invasive method is suitable for monitoring changes in tendon properties as predictors of athletic performance, injury or therapeutic progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fire safety design of building structures has received greater attention in recent times due to continuing losses of properties and lives in fires. However, the structural behaviour of thin-walled cold-formed steel columns under fire conditions is not well understood despite the increasing use of light gauge steels in building construction. Cold-formed steel columns are often subject to local buckling effects. Therefore a series of laboratory tests of lipped and unlipped channel columns made of varying steel thicknesses and grades was undertaken at uniform elevated temperatures up to 700°C under steady state conditions. Finite element models of the tested columns were also developed, and their elastic buckling and nonlinear analysis results were compared with test results at elevated temperatures. Effects of the degradation of mechanical properties of steel with temperature were included in the finite element analyses. The use of accurately measured yield stress, elasticity modulus and stress-strain curves at elevated temperatures provided a good comparison of the ultimate loads and load-deflection curves from tests and finite element analyses. The commonly used effective width design rules and the direct strength method at ambient temperature were then used to predict the ultimate loads at elevated temperatures by using the reduced mechanical properties. By comparing these predicted ultimate loads with those from tests and finite element analyses, the accuracy of using this design approach was evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. In isotropic materials, the speed of acoustic wave propagation is governed by the bulk modulus and density. For tendon, which is a structural composite of fluid and collagen, however, there is some anisotropy requiring an adjustment for Poisson's ratio. This paper explores these relationships using data collected, in vivo, on human Achilles tendon and then compares estimates of elastic modulus and hysteresis against published values from in vitro mechanical tests. Methods. Measurements using conventional B-model ultrasound imaging, inverse dynamics and acoustic transmission techniques were used to determine dimensions, loading conditions and longitudinal speed of sound in the Achilles tendon during a series of isometric plantar flexion exercises against body weight. Upper and lower bounds for speed of sound versus tensile stress in the tendon were then modelled and estimates of the elastic modulus and hysteresis of the Achilles tendon derived. Results. Axial speed of sound varied between 1850 and 2090 ms-1 with a non-linear, asymptotic dependency on the level of tensile stress (5-35 MPa) in the tendon. Estimates derived for the elastic modulus of the Achilles tendon ranged between 1-2 GPa. Hysteresis derived from models of the stress-strain relationship, ranged from 3-11%. Discussion. Estimates of elastic modulus agree closely with those previously reported from direct measurements obtained via mechanical tensile tests on major weight bearing tendons in vitro [1,2]. Hysteresis derived from models of the stress-strain relationship is consistent with direct measures from various mamalian tendon (7-10%) but is lower than previous estimates in human tendon (17-26%) [3]. This non-invasive method would appear suitable for monitoring changes in tendon properties during dynamic sporting activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an accurate and robust geometric and material nonlinear formulation to predict structural behaviour of unprotected steel members at elevated temperatures. A fire analysis including large displacement effects for frame structures is presented. This finite element formulation of beam-column elements is based on the plastic hinge approach to model the elasto-plastic strain-hardening material behaviour. The Newton-Raphson method allowing for the thermal-time dependent effect was employed for the solution of the non-linear governing equations for large deflection in thermal history. A combined incremental and total formulation for determining member resistance is employed in this nonlinear solution procedure for the efficient modeling of nonlinear effects. Degradation of material strength with increasing temperature is simulated by a set of temperature-stress-strain curves according to both ECCS and BS5950 Part 8, which implicitly allows for creep deformation. The effects of uniform or non-uniform temperature distribution over the section of the structural steel member are also considered. Several numerical and experimental verifications are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insulated rail joints are critical for train safety as they control electrical signalling systems; unfortunately they exhibit excessive ratchetting of the railhead near the endpost insulators. This paper reports a three-dimensional global model of these joints under wheel–rail contact pressure loading and a sub-model examining the ratchetting failures of the railhead. The sub-model employs a non-linear isotropic–kinematic elastic–plastic material model and predicts stress/strain levels in the localised railhead zone adjacent to the endpost which is placed in the air gap between the two rail ends at the insulated rail joint. The equivalent plastic strain plot is utilised to capture the progressive railhead damage adequately. Associated field and laboratory testing results of damage to the railhead material suggest that the simulation results are reasonable.