167 resultados para stochastic linear programming


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a recommendation system that supports process participants in taking risk-informed decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we suggest to the participant the action to perform which minimizes the predicted process risk. Risks are predicted by traversing decision trees generated from the logs of past process executions, which consider process data, involved resources, task durations and other information elements like task frequencies. When applied in the context of multiple process instances running concurrently, a second technique is employed that uses integer linear programming to compute the optimal assignment of resources to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The recommendation system has been implemented as a set of components on top of the YAWL BPM system and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a large insurance company. The results, based on a simulation of the real-life scenario and its comparison with the event data provided by the company, show that the process instances executed concurrently complete with significantly fewer faults and with lower fault severities, when the recommendations provided by our recommendation system are taken into account.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quality of environmental decisions are gauged according to the management objectives of a conservation project. Management objectives are generally about maximising some quantifiable measure of system benefit, for instance population growth rate. They can also be defined in terms of learning about the system in question, in such a case actions would be chosen that maximise knowledge gain, for instance in experimental management sites. Learning about a system can also take place when managing practically. The adaptive management framework (Walters 1986) formally acknowledges this fact by evaluating learning in terms of how it will improve management of the system and therefore future system benefit. This is taken into account when ranking actions using stochastic dynamic programming (SDP). However, the benefits of any management action lie on a spectrum from pure system benefit, when there is nothing to be learned about the system, to pure knowledge gain. The current adaptive management framework does not permit management objectives to evaluate actions over the full range of this spectrum. By evaluating knowledge gain in units distinct to future system benefit this whole spectrum of management objectives can be unlocked. This paper outlines six decision making policies that differ across the spectrum of pure system benefit through to pure learning. The extensions to adaptive management presented allow specification of the relative importance of learning compared to system benefit in management objectives. Such an extension means practitioners can be more specific in the construction of conservation project objectives and be able to create policies for experimental management sites in the same framework as practical management sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. © 2010 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most cases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinci Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations of a threatened species, the combined effects of differences in habitat quality, cost of action, and current subpopulation probability of extinction need to be integrated. We provide a useful guideline for allocating resources among isolated subpopulations of any threatened species. © 2010 by the Ecological Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The notion of being sure that you have completely eradicated an invasive species is fanciful because of imperfect detection and persistent seed banks. Eradication is commonly declared either on an ad hoc basis, on notions of seed bank longevity, or on setting arbitrary thresholds of 1% or 5% confidence that the species is not present. Rather than declaring eradication at some arbitrary level of confidence, we take an economic approach in which we stop looking when the expected costs outweigh the expected benefits. We develop theory that determines the number of years of absent surveys required to minimize the net expected cost. Given detection of a species is imperfect, the optimal stopping time is a trade-off between the cost of continued surveying and the cost of escape and damage if eradication is declared too soon. A simple rule of thumb compares well to the exact optimal solution using stochastic dynamic programming. Application of the approach to the eradication programme of Helenium amarum reveals that the actual stopping time was a precautionary one given the ranges for each parameter. © 2006 Blackwell Publishing Ltd/CNRS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strategic searching for invasive pests presents a formidable challenge for conservation managers. Limited funding can necessitate choosing between surveying many sites cursorily, or focussing intensively on fewer sites. While existing knowledge may help to target more likely sites, e.g. with species distribution models (maps), this knowledge is not flawless and improving it also requires management investment. 2.In a rare example of trading-off action against knowledge gain, we combine search coverage and accuracy, and its future improvement, within a single optimisation framework. More specifically we examine under which circumstances managers should adopt one of two search-and-control strategies (cursory or focussed), and when they should divert funding to improving knowledge, making better predictive maps that benefit future searches. 3.We use a family of Receiver Operating Characteristic curves to reflect the quality of maps that direct search efforts. We demonstrate our framework by linking these to a logistic model of invasive spread such as that for the red imported fire ant Solenopsis invicta in south-east Queensland, Australia. 4.Cursory widespread searching is only optimal if the pest is already widespread or knowledge is poor, otherwise focussed searching exploiting the map is preferable. For longer management timeframes, eradication is more likely if funds are initially devoted to improving knowledge, even if this results in a short-term explosion of the pest population. 5.Synthesis and applications. By combining trade-offs between knowledge acquisition and utilization, managers can better focus - and justify - their spending to achieve optimal results in invasive control efforts. This framework can improve the efficiency of any ecological management that relies on predicting occurrence. © 2010 The Authors. Journal of Applied Ecology © 2010 British Ecological Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Threatened species often exist in a small number of isolated subpopulations. Given limitations on conservation spending, managers must choose from strategies that range from managing just one subpopulation and risking all other subpopulations to managing all subpopulations equally and poorly, thereby risking the loss of all subpopulations. We took an economic approach to this problem in an effort to discover a simple rule of thumb for optimally allocating conservation effort among subpopulations. This rule was derived by maximizing the expected number of extant subpopulations remaining given n subpopulations are actually managed. We also derived a spatiotemporally optimized strategy through stochastic dynamic programming. The rule of thumb suggested that more subpopulations should be managed if the budget increases or if the cost of reducing local extinction probabilities decreases. The rule performed well against the exact optimal strategy that was the result of the stochastic dynamic program and much better than other simple strategies (e.g., always manage one extant subpopulation or half of the remaining subpopulation). We applied our approach to the allocation of funds in 2 contrasting case studies: reduction of poaching of Sumatran tigers (Panthera tigris sumatrae) and habitat acquisition for San Joaquin kit foxes (Vulpes macrotis mutica). For our estimated annual budget for Sumatran tiger management, the mean time to extinction was about 32 years. For our estimated annual management budget for kit foxes in the San Joaquin Valley, the mean time to extinction was approximately 24 years. Our framework allows managers to deal with the important question of how to allocate scarce conservation resources among subpopulations of any threatened species. © 2008 Society for Conservation Biology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction of dynamic pricing in present retail market, considerably affects customers with an increased cost of energy consumption. Therefore, customers are enforced to control their loads according to price variation. This paper proposes a new technique of Home Energy Management, which helps customers to minimize their cost of energy consumption by appropriately controlling their loads. Thermostatically Controllable Appliances (TCAs) such as air conditioner and water heater are focused in this study, as they consume more than 50% of the total household energy consumption. The control process includes stochastic dynamic programming, which incorporated uncertainties in price and demand variation. It leads to an accurate selection of appliance settings. It is followed by a real time control of selected appliances with its optimal settings. Temperature set points of TCAs are adjusted based on price droop which is a reflection of actual cost of energy consumption. Customer satisfaction is maintained within limits using constraint optimization. It is showed that considerable energy savings is achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organisations are constantly seeking new ways to improve operational efficiencies. This study investigates a novel way to identify potential efficiency gains in business operations by observing how they were carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how these trade-offs can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A number of optimisation techniques are proposed to explore and assess alternative execution scenarios. The objective function is represented by a cost structure that captures different process dimensions. An experimental evaluation is conducted to analyse the performance and scalability of the optimisation techniques: integer linear programming (ILP), hill climbing, tabu search, and our earlier proposed hybrid genetic algorithm approach. The findings demonstrate that the hybrid genetic algorithm is scalable and performs better compared to other techniques. Moreover, we argue that the use of ILP is unrealistic in this setup and cannot handle complex cost functions such as the ones we propose. Finally, we show how cost-related insights can be gained from improved execution scenarios and how these can be utilised to put forward recommendations for reducing process-related cost and overhead within organisations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Invasive non-native plants have negatively impacted on biodiversity and ecosystem functions world-wide. Because of the large number of species, their wide distributions and varying degrees of impact, we need a more effective method for prioritizing control strategies for cost-effective investment across heterogeneous landscapes. Here, we develop a prioritization framework that synthesizes scientific data, elicits knowledge from experts and stakeholders to identify control strategies, and appraises the cost-effectiveness of strategies. Our objective was to identify the most cost-effective strategies for reducing the total area dominated by high-impact non-native plants in the Lake Eyre Basin (LEB). We use a case study of the ˜120 million ha Lake Eyre Basin that comprises some of the most distinctive Australian landscapes, including Uluru-Kata Tjuta National Park. More than 240 non-native plant species are recorded in the Lake Eyre Basin, with many predicted to spread, but there are insufficient resources to control all species. Lake Eyre Basin experts identified 12 strategies to control, contain or eradicate non-native species over the next 50 years. The total cost of the proposed Lake Eyre Basin strategies was estimated at AU$1·7 billion, an average of AU$34 million annually. Implementation of these strategies is estimated to reduce non-native plant dominance by 17 million ha – there would be a 32% reduction in the likely area dominated by non-native plants within 50 years if these strategies were implemented. The three most cost-effective strategies were controlling Parkinsonia aculeata, Ziziphus mauritiana and Prosopis spp. These three strategies combined were estimated to cost only 0·01% of total cost of all the strategies, but would provide 20% of the total benefits. Over 50 years, cost-effective spending of AU$2·3 million could eradicate all non-native plant species from the only threatened ecological community within the Lake Eyre Basin, the Great Artesian Basin discharge springs. Synthesis and applications. Our framework, based on a case study of the ˜120 million ha Lake Eyre Basin in Australia, provides a rationale for financially efficient investment in non-native plant management and reveals combinations of strategies that are optimal for different budgets. It also highlights knowledge gaps and incidental findings that could improve effective management of non-native plants, for example addressing the reliability of species distribution data and prevalence of information sharing across states and regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adaptions of weighted rank regression to the accelerated failure time model for censored survival data have been successful in yielding asymptotically normal estimates and flexible weighting schemes to increase statistical efficiencies. However, for only one simple weighting scheme, Gehan or Wilcoxon weights, are estimating equations guaranteed to be monotone in parameter components, and even in this case are step functions, requiring the equivalent of linear programming for computation. The lack of smoothness makes standard error or covariance matrix estimation even more difficult. An induced smoothing technique overcame these difficulties in various problems involving monotone but pure jump estimating equations, including conventional rank regression. The present paper applies induced smoothing to the Gehan-Wilcoxon weighted rank regression for the accelerated failure time model, for the more difficult case of survival time data subject to censoring, where the inapplicability of permutation arguments necessitates a new method of estimating null variance of estimating functions. Smooth monotone parameter estimation and rapid, reliable standard error or covariance matrix estimation is obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article contributes an original integrated model of an open-pit coal mine for supporting energy-efficient decisions. Mixed integer linear programming is used to formulate a general integrated model of the operational energy consumption of four common open-pit coal mining subsystems: excavation and haulage, stockpiles, processing plants and belt conveyors. Mines are represented as connected instances of the four subsystems, in a flow sheet manner, which are then fitted to data provided by the mine operators. Solving the integrated model ensures the subsystems’ operations are synchronised and whole-of-mine energy efficiency is encouraged. An investigation on a case study of an open-pit coal mine is conducted to validate the proposed methodology. Opportunities are presented for using the model to aid energy-efficient decision-making at various levels of a mine, and future work to improve the approach is described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis investigates factors that impact the energy efficiency of a mining operation. An innovative mathematical framework and solution approach are developed to model, solve and analyse an open-pit coal mine. A case study in South East Queensland is investigated to validate the approach and explore the opportunities for using it to aid long, medium and short term decision makers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The R statistical environment and language has demonstrated particular strengths for interactive development of statistical algorithms, as well as data modelling and visualisation. Its current implementation has an interpreter at its core which may result in a performance penalty in comparison to directly executing user algorithms in the native machine code of the host CPU. In contrast, the C++ language has no built-in visualisation capabilities, handling of linear algebra or even basic statistical algorithms; however, user programs are converted to high-performance machine code, ahead of execution. A new method avoids possible speed penalties in R by using the Rcpp extension package in conjunction with the Armadillo C++ matrix library. In addition to the inherent performance advantages of compiled code, Armadillo provides an easy-to-use template-based meta-programming framework, allowing the automatic pooling of several linear algebra operations into one, which in turn can lead to further speedups. With the aid of Rcpp and Armadillo, conversion of linear algebra centered algorithms from R to C++ becomes straightforward. The algorithms retains the overall structure as well as readability, all while maintaining a bidirectional link with the host R environment. Empirical timing comparisons of R and C++ implementations of a Kalman filtering algorithm indicate a speedup of several orders of magnitude.