747 resultados para statistical framework


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The popularity of Bayesian Network modelling of complex domains using expert elicitation has raised questions of how one might validate such a model given that no objective dataset exists for the model. Past attempts at delineating a set of tests for establishing confidence in an entirely expert-elicited model have focused on single types of validity stemming from individual sources of uncertainty within the model. This paper seeks to extend the frameworks proposed by earlier researchers by drawing upon other disciplines where measuring latent variables is also an issue. We demonstrate that even in cases where no data exist at all there is a broad range of validity tests that can be used to establish confidence in the validity of a Bayesian Belief Network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most individuals travel in order to participate in a network of activities which are important for attaining a good standard of living. Because such activities are commonly widely dispersed and not located locally, regular access to a vehicle is important to avoid exclusion. However, planning transport system provisions that can engage members of society in an acceptable degree of activity participation remains a great challenge. The main challenges in most cities of the world are due to significant population growth and rapid urbanisation which produces increased demand for transport. Keeping pace with these challenges in most urban areas is difficult due to the widening gap between supply and demand for transport systems which places the urban population at a transport disadvantage. The key element in mitigating the issue of urban transport disadvantage is to accurately identify the urban transport disadvantaged. Although wide-ranging variables and multi-dimensional methods have been used to identify this group, variables are commonly selected using ad-hoc techniques and unsound methods. This poses questions of whether the current variables used are accurately linked with urban transport disadvantage, and the effectiveness of the current policies. To fill these gaps, the research conducted for this thesis develops an operational urban transport disadvantage framework (UTDAF) based on key statistical urban transport disadvantage variables to accurately identify the urban transport disadvantaged. The thesis develops a methodology based on qualitative and quantitative statistical approaches to develop an urban transport disadvantage framework designed to accurately identify urban transport disadvantage. The reliability and the applicability of the methodology developed is the prime concern rather than the accuracy of the estimations. Relevant concepts that impact on urban transport disadvantage identification and measurement and a wide range of urban transport disadvantage variables were identified through a review of the existing literature. Based on the reviews, a conceptual urban transport disadvantage framework was developed based on the causal theory. Variables identified during the literature review were selected and consolidated based on the recommendations of international and local experts during the Delphi study. Following the literature review, the conceptual urban transport disadvantage framework was statistically assessed to identify key variables. Using the statistical outputs, the key variables were weighted and aggregated to form the UTDAF. Before the variable's weights were finalised, they were adjusted based on results of correlation analysis between elements forming the framework to improve the framework's accuracy. The UTDAF was then applied to three contextual conditions to determine the framework's effectiveness in identifying urban transport disadvantage. The development of the framework is likely to be a robust application measure for policy makers to justify infrastructure investments and to generate awareness about the issue of urban transport disadvantage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Validation is an important issue in the development and application of Bayesian Belief Network (BBN) models, especially when the outcome of the model cannot be directly observed. Despite this, few frameworks for validating BBNs have been proposed and fewer have been applied to substantive real-world problems. In this paper we adopt the approach by Pitchforth and Mengersen (2013), which includes nine validation tests that each focus on the structure, discretisation, parameterisation and behaviour of the BBNs included in the case study. We describe the process and result of implementing a validation framework on a model of a real airport terminal system with particular reference to its effectiveness in producing a valid model that can be used and understood by operational decision makers. In applying the proposed validation framework we demonstrate the overall validity of the Inbound Passenger Facilitation Model as well as the effectiveness of the validity framework itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A catchment-scale multivariate statistical analysis of hydrochemistry enabled assessment of interactions between alluvial groundwater and Cressbrook Creek, an intermittent drainage system in southeast Queensland, Australia. Hierarchical cluster analyses and principal component analysis were applied to time-series data to evaluate the hydrochemical evolution of groundwater during periods of extreme drought and severe flooding. A simple three-dimensional geological model was developed to conceptualise the catchment morphology and the stratigraphic framework of the alluvium. The alluvium forms a two-layer system with a basal coarse-grained layer overlain by a clay-rich low-permeability unit. In the upper and middle catchment, alluvial groundwater is chemically similar to streamwater, particularly near the creek (reflected by high HCO3/Cl and K/Na ratios and low salinities), indicating a high degree of connectivity. In the lower catchment, groundwater is more saline with lower HCO3/Cl and K/Na ratios, notably during dry periods. Groundwater salinity substantially decreased following severe flooding in 2011, notably in the lower catchment, confirming that flooding is an important mechanism for both recharge and maintaining groundwater quality. The integrated approach used in this study enabled effective interpretation of hydrological processes and can be applied to a variety of hydrological settings to synthesise and evaluate large hydrochemical datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na–Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na–HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous–Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an R2 goodness of fit of 0.9994 and 0.9982 respectively over a 10 h test period. The utility of the framework is demonstrated on a number of usage scenarios including causal analysis and ‘what-if’ analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a layered framework for the purposes of integrating different Socio-Technical Systems (STS) models and perspectives into a whole-of-systems model. Holistic modelling plays a critical role in the engineering of STS due to the interplay between social and technical elements within these systems and resulting emergent behaviour. The framework decomposes STS models into components, where each component is either a static object, dynamic object or behavioural object. Based on existing literature, a classification of the different elements that make up STS, whether it be a social, technical or a natural environment element, is developed; each object can in turn be classified according to the STS elements it represents. Using the proposed framework, it is possible to systematically decompose models to an extent such that points of interface can be identified and the contextual factors required in transforming the component of one model to interface into another is obtained. Using an airport inbound passenger facilitation process as a case study socio-technical system, three different models are analysed: a Business Process Modelling Notation (BPMN) model, Hybrid Queue-based Bayesian Network (HQBN) model and an Agent Based Model (ABM). It is found that the framework enables the modeller to identify non-trivial interface points such as between the spatial interactions of an ABM and the causal reasoning of a HQBN, and between the process activity representation of a BPMN and simulated behavioural performance in a HQBN. Such a framework is a necessary enabler in order to integrate different modelling approaches in understanding and managing STS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose of this paper One way in which the tendering process can be further improved is by reviewing and clarifying the high costs that participants face during the course of the tendering phase. The study aims to provide project teams working in construction tender preparation a clear picture of what to expect when tendering for infrastructure projects. Design/methodology/approach Firstly, a review of current literature on tendering in infrastructure projects is conducted to identify the associated costs affecting traditional and PPP procurements as well as the potential measures contributing to tendering cost-reduction. A theoretical framework and its corresponding research hypotheses, which are based on the literature reviewed, are then proposed. An industry-wide questionnaire survey is currently under design to solicit industry practitioners’ views on tendering costs and the associated tendering cost-reduction measures. The data collected in the survey will subject to statistical analysis to test the proposed research hypotheses, which will be reported in a forthcoming paper. Findings and value The direct and indirect costs in public-private procurement have been identified and have been categorised into internal and external costs arising from working on tender submissions. A theoretical framework, mainly composed of five mechanisms of cost reduction, has been proposed and will be tested in a forthcoming industry-wide questionnaire survey. Originality/value of paper The findings are expected to lead to a transparent tendering process in infrastructure procurement, in which there is increased engagement from the private sector as well as an increase in competitive tendering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We defined a new statistical fluid registration method with Lagrangian mechanics. Although several authors have suggested that empirical statistics on brain variation should be incorporated into the registration problem, few algorithms have included this information and instead use regularizers that guarantee diffeomorphic mappings. Here we combine the advantages of a large-deformation fluid matching approach with empirical statistics on population variability in anatomy. We reformulated the Riemannian fluid algorithmdeveloped in [4], and used a Lagrangian framework to incorporate 0 th and 1st order statistics in the regularization process. 92 2D midline corpus callosum traces from a twin MRI database were fluidly registered using the non-statistical version of the algorithm (algorithm 0), giving initial vector fields and deformation tensors. Covariance matrices were computed for both distributions and incorporated either separately (algorithm 1 and algorithm 2) or together (algorithm 3) in the registration. We computed heritability maps and two vector and tensorbased distances to compare the power and the robustness of the algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we tackle the problem of unsupervised domain adaptation for classification. In the unsupervised scenario where no labeled samples from the target domain are provided, a popular approach consists in transforming the data such that the source and target distributions be- come similar. To compare the two distributions, existing approaches make use of the Maximum Mean Discrepancy (MMD). However, this does not exploit the fact that prob- ability distributions lie on a Riemannian manifold. Here, we propose to make better use of the structure of this man- ifold and rely on the distance on the manifold to compare the source and target distributions. In this framework, we introduce a sample selection method and a subspace-based method for unsupervised domain adaptation, and show that both these manifold-based techniques outperform the cor- responding approaches based on the MMD. Furthermore, we show that our subspace-based approach yields state-of- the-art results on a standard object recognition benchmark.