340 resultados para sensor classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative behaviour analysis requires the classification of behaviour to produce the basic data. In practice, much of this work will be performed by multiple observers, and maximising inter-observer consistency is of particular importance. Another discipline where consistency in classification is vital is biological taxonomy. A classification tool of great utility, the binary key, is designed to simplify the classification decision process and ensure consistent identification of proper categories. We show how this same decision-making tool - the binary key - can be used to promote consistency in the classification of behaviour. The construction of a binary key also ensures that the categories in which behaviour is classified are complete and non-overlapping. We discuss the general principles of design of binary keys, and illustrate their construction and use with a practical example from education research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems have recently been added to the already wide collection of wireless sensor networks applications. The PCS/SCADA environment is somewhat more amenable to the use of heavy cryptographic mechanisms such as public key cryptography than other sensor application environments. The sensor nodes in the environment, however, are still open to devastating attacks such as node capture, which makes designing a secure key management challenging. In this paper, a key management scheme is proposed to defeat node capture attack by offering both forward and backward secrecies. Our scheme overcomes the pitfalls which Nilsson et al.'s scheme suffers from, and is not more expensive than their scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Australia, the Queensland fruit fly (B. tryoni), is the most destructive insect pest of horticulture, attacking nearly all fruit and vegetable crops. This project has researched and prototyped a system for monitoring fruit flies so that authorities can be alerted when a fly enters a crop in a more efficient manner than is currently used. This paper presents the idea of our sensor platform design as well as the fruit fly detection and recognition algorithm by using machine vision techniques. Our experiments showed that the designed trap and sensor platform is capable to capture quality fly images, the invasive flies can be successfully detected and the average precision of the Queensland fruit fly recognition is 80% from our experiment.