111 resultados para second-order convergence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Failures on rolling element bearings usually originate from cracks that are detectable even in their early stage of propogation by properly analyzing vibration signals measured in the proximity of the bearing. Due to micro-slipping in the roller-races contact, damage-induced vibration signals belong to the family of quasi-periodic signals with a strong second order cyclostationary component. Cyclic coherence and its integrated form are widely considered as the most suitable tools for bearing fault diagnostics and their theoretical bases have been already consolidated. This paper presents how to correctly set the parameters of the cyclostationary analysis tool to be implemented in an automatable algorithm. In the first part of the paper some general guidelines are provided for the specific application. These considerations are further verified, applying cyclostationary tools to data collected in an experimental campaign on a specific test-rig.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We aim to design strategies for sequential decision making that adjust to the difficulty of the learning problem. We study this question both in the setting of prediction with expert advice, and for more general combinatorial decision tasks. We are not satisfied with just guaranteeing minimax regret rates, but we want our algorithms to perform significantly better on easy data. Two popular ways to formalize such adaptivity are second-order regret bounds and quantile bounds. The underlying notions of 'easy data', which may be paraphrased as "the learning problem has small variance" and "multiple decisions are useful", are synergetic. But even though there are sophisticated algorithms that exploit one of the two, no existing algorithm is able to adapt to both. In this paper we outline a new method for obtaining such adaptive algorithms, based on a potential function that aggregates a range of learning rates (which are essential tuning parameters). By choosing the right prior we construct efficient algorithms and show that they reap both benefits by proving the first bounds that are both second-order and incorporate quantiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite element method in principle adaptively divides the continuous domain with complex geometry into discrete simple subdomain by using an approximate element function, and the continuous element loads are also converted into the nodal load by means of the traditional lumping and consistent load methods, which can standardise a plethora of element loads into a typical numerical procedure, but element load effect is restricted to the nodal solution. It in turn means the accurate continuous element solutions with the element load effects are merely restricted to element nodes discretely, and further limited to either displacement or force field depending on which type of approximate function is derived. On the other hand, the analytical stability functions can give the accurate continuous element solutions due to element loads. Unfortunately, the expressions of stability functions are very diverse and distinct when subjected to different element loads that deter the numerical routine for practical applications. To this end, this paper presents a displacement-based finite element function (generalised element load method) with a plethora of element load effects in the similar fashion that never be achieved by the stability function, as well as it can generate the continuous first- and second-order elastic displacement and force solutions along an element without loss of accuracy considerably as the analytical approach that never be achieved by neither the lumping nor consistent load methods. Hence, the salient and unique features of this paper (generalised element load method) embody its robustness, versatility and accuracy in continuous element solutions when subjected to the great diversity of transverse element loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Achieving knowledge-based urban development (KBUD) profoundly depends on not only encouraging the development of economic activities, but also strengthening the societal, environmental and governance bases of city-regions. In recent years, a number of global city-regions have been investigated from the angle of this multidimensional perspective, which has provided a new comprehension in the development processes of primate city-regions. However, there is a knowledge gap in understanding how KBUD works in the second-order city-region (SOCR) context. This warrants more attention as SOCRs potentially help secure balanced development and territorial cohesion. This paper aims to empirically investigate KBUD performances of SOCRs in order to generate new insights. An assessment framework is utilised in the Finnish context, where the findings provide a nationally benchmarked snapshot of the degree of achievements of SOCRs based on numerous KBUD performance areas. The results shed light on the unique Finnish urban and regional development process, and provide lessons for other SOCRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 'pseudo-Bayesian' interpretation of standard errors yields a natural induced smoothing of statistical estimating functions. When applied to rank estimation, the lack of smoothness which prevents standard error estimation is remedied. Efficiency and robustness are preserved, while the smoothed estimation has excellent computational properties. In particular, convergence of the iterative equation for standard error is fast, and standard error calculation becomes asymptotically a one-step procedure. This property also extends to covariance matrix calculation for rank estimates in multi-parameter problems. Examples, and some simple explanations, are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Finally, some numerical examples are given and the results demonstrate the effectiveness of theoretical analysis. Keywords: The variable-order Galilei invariant advection diffusion equation with a nonlinear source term; The variable-order Riemann–Liouville fractional partial derivative; Stability; Convergence; Numerical scheme improving temporal accuracy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many physical processes appear to exhibit fractional order behavior that may vary with time and/or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider a new space–time variable fractional order advection–dispersion equation on a finite domain. The equation is obtained from the standard advection–dispersion equation by replacing the first-order time derivative by Coimbra’s variable fractional derivative of order α(x)∈(0,1]α(x)∈(0,1], and the first-order and second-order space derivatives by the Riemann–Liouville derivatives of order γ(x,t)∈(0,1]γ(x,t)∈(0,1] and β(x,t)∈(1,2]β(x,t)∈(1,2], respectively. We propose an implicit Euler approximation for the equation and investigate the stability and convergence of the approximation. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Higher order spectral analysis is used to investigate nonlinearities in time series of voltages measured from a realization of Chua's circuit. For period-doubled limit cycles, quadratic and cubic nonlinear interactions result in phase coupling and energy exchange between increasing numbers of triads and quartets of Fourier components as the nonlinearity of the system is increased. For circuit parameters that result in a chaotic Rossler-type attractor, bicoherence and tricoherence spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. When the circuit exhibits a double-scroll chaotic attractor the bispectrum is zero, but the tricoherences are high, consistent with the importance of higher-than-second order nonlinear interactions during chaos associated with the double scroll.