503 resultados para sciences européennes, applications
Resumo:
A practical approach for identifying solution robustness is proposed for situations where parameters are uncertain. The approach is based upon the interpretation of a probability density function (pdf) and the definition of three parameters that describe how significant changes in the performance of a solution are deemed to be. The pdf is constructed by interpreting the results of simulations. A minimum number of simulations are achieved by updating the mean, variance, skewness and kurtosis of the sample using computationally efficient recursive equations. When these criterions have converged then no further simulations are needed. A case study involving several no-intermediate storage flow shop scheduling problems demonstrates the effectiveness of the approach.
Resumo:
To cover wide range of pulsed power applications, this paper proposes a modularity concept to improve the performance and flexibility of the pulsed power supply. The proposed scheme utilizes the advantage of parallel and series configurations of flyback modules in obtaining high-voltage levels with fast rise time (dv/dt). Prototypes were implemented using 600-V insulated-gate bipolar transistor (IGBT) switches to generate up to 4-kV output pulses with 1-kHz repetition rate for experimentation. To assess the proposed modular approach for higher number of the modules, prototypes were implemented using 1700-V IGBTs switches, based on ten-series modules, and tested up to 20 kV. Conducted experimental results verified the effectiveness of the proposed method
Resumo:
Background: Outside the mass-spectrometer, proteomics research does not take place in a vacuum. It is affected by policies on funding and research infrastructure. Proteomics research both impacts and is impacted by potential clinical applications. It provides new techniques & clinically relevant findings, but the possibilities for such innovations (and thus the perception of the potential for the field by funders) are also impacted by regulatory practices and the readiness of the health sector to incorporate proteomics-related tools & findings. Key to this process is how knowledge is translated. Methods: We present preliminary results from a multi-year social science project, funded by the Canadian Institutes of Health Research, on the processes and motivations for knowledge translation in the health sciences. The proteomics case within this wider study uses qualitative methods to examine the interplay between proteomics science and regulatory and policy makers regarding clinical applications of proteomics. Results: Adopting an interactive format to encourage conference attendees’ feedback, our poster focuses on deficits in effective knowledge translation strategies from the laboratory to policy, clinical, & regulatory arenas. An analysis of the interviews conducted to date suggests five significant choke points: the changing priorities of funding agencies; the complexity of proteomics research; the organisation of proteomics research; the relationship of proteomics to genomics and other omics sciences; and conflict over the appropriate role of standardisation. Conclusion: We suggest that engagement with aspects of knowledge translation, such as those mentioned above, is crucially important for the eventual clinical application ofproteomics science on any meaningful scale.
Resumo:
Most social network users hold more than one social network account and utilize them in different ways depending on the digital context. For example, friendly chat on Facebook, professional discussion on LinkedIn, and health information exchange on PatientsLikeMe. Thus many web users need to manage many disparate profiles across many distributed online sources. Maintaining these profiles is cumbersome, time consuming, inefficient, and leads to lost opportunity. In this paper we propose a framework for multiple profile management of online social networks and showcase a demonstrator utilising an open source platform. The result of the research enables a user to create and manage an integrated profile and share/synchronise their profiles with their social networks. A number of use cases were created to capture the functional requirements and describe the interactions between users and the online services. An innovative application of this project is in public health informatics. We utilize the prototype to examine how the framework can benefit patients and physicians. The framework can greatly enhance health information management for patients and more importantly offer a more comprehensive personal health overview of patients to physicians.
Resumo:
Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.
Resumo:
CTAC2012 was the 16th biennial Computational Techniques and Applications Conference, and took place at Queensland University of Technology from 23 - 26 September, 2012. The ANZIAM Special Interest Group in Computational Techniques and Applications is responsible for the CTAC meetings, the first of which was held in 1981.
Resumo:
Three dimensional cellular models that mimic disease are being increasingly investigated and have opened an exciting new research area into understanding pathomechanisms. The advantage of 3D in vitro disease models is that they allow systematic and in-depth studies of physiological and pathophysiological processes with less costs and ethical concerns that have arisen with animal models. The purpose of the 3D approach is to allow crosstalk between cells and microenvironment, and with cues from the microenvironment, cells can assemble their niche similar to in vivo conditions. The use of 3D models for mimicking disease processes such as cancer, osteoarthritis etc., is only emerging and allows multidisciplinary teams consisting of tissue engineers, biologist biomaterial scientists and clinicians to work closely together. While in vitro systems require rigorous testing before they can be considered as replicates of the in vivo model, major steps have been made, suggesting that they will become powerful tools for studying physiological and pathophysiological processes. This paper aims to summarize some of the existing 3D models and proposes a novel 3D model of the eye structures that are involved in the most common cause of blindness in the Western World, namely age-related macular degeneration (AMD).
Resumo:
Smartphones get increasingly popular where more and more smartphone platforms emerge. Special attention was gained by the open source platform Android which was presented by the Open Handset Alliance (OHA) hosting members like Google, Motorola, and HTC. Android uses a Linux kernel and a stripped-down userland with a custom Java VM set on top. The resulting system joins the advantages of both environments, while third-parties are intended to develop only Java applications at the moment. In this work, we present the benefit of using native applications in Android. Android includes a fully functional Linux, and using it for heavy computational tasks when developing applications can bring in substantional performance increase. We present how to develop native applications and software components, as well as how to let Linux applications and components communicate with Java programs. Additionally, we present performance measurements of native and Java applications executing identical tasks. The results show that native C applications can be up to 30 times as fast as an identical algorithm running in Dalvik VM. Java applications can become a speed-up of up to 10 times if utilizing JNI.
Resumo:
Mesenchymal stem cells (MSCs) are multi-potent cells that can differentiate into various cell types and have been used widely in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with the activation of the PI3K/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functinalities. Biomaterials have been modified in their properties, surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.
Resumo:
Dose kernels may be used to calculate dose distributions in radiotherapy (as described by Ahnesjo et al., 1999). Their calculation requires use of Monte Carlo methods, usually by forcing interactions to occur at a point. The Geant4 Monte Carlo toolkit provides a capability to force interactions to occur in a particular volume. We have modified this capability and created a Geant4 application to calculate dose kernels in cartesian, cylindrical, and spherical scoring systems. The simulation considers monoenergetic photons incident at the origin of a 3 m x 3 x 9 3 m water volume. Photons interact via compton, photo-electric, pair production, and rayleigh scattering. By default, Geant4 models photon interactions by sampling a physical interaction length (PIL) for each process. The process returning the smallest PIL is then considered to occur. In order to force the interaction to occur within a given length, L_FIL, we scale each PIL according to the formula: PIL_forced = L_FIL 9 (1 - exp(-PIL/PILo)) where PILo is a constant. This ensures that the process occurs within L_FIL, whilst correctly modelling the relative probability of each process. Dose kernels were produced for an incident photon energy of 0.1, 1.0, and 10.0 MeV. In order to benchmark the code, dose kernels were also calculated using the EGSnrc Edknrc user code. Identical scoring systems were used; namely, the collapsed cone approach of the Edknrc code. Relative dose difference images were then produced. Preliminary results demonstrate the ability of the Geant4 application to reproduce the shape of the dose kernels; median relative dose differences of 12.6, 5.75, and 12.6 % were found for an incident photon energy of 0.1, 1.0, and 10.0 MeV respectively.
Resumo:
New Australian research has found scientists spent the equivalent of 550 working years applying for grants from the country's largest health and medical research grants scheme in 2012, and that around 75% of this time was spent on unsuccessful applications. The Queensland University of Technology (QUT) study also found that spending more time on a funding proposal did not equate to a greater chance of success.
Resumo:
Focuses on the various aspects of advances in future information communication technology and its applications Presents the latest issues and progress in the area of future information communication technology Applicable to both researchers and professionals These proceedings are based on the 2013 International Conference on Future Information & Communication Engineering (ICFICE 2013), which will be held at Shenyang in China from June 24-26, 2013. The conference is open to all over the world, and participation from Asia-Pacific region is particularly encouraged. The focus of this conference is on all technical aspects of electronics, information, and communications ICFICE-13 will provide an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of FICE. In addition, the conference will publish high quality papers which are closely related to the various theories and practical applications in FICE. Furthermore, we expect that the conference and its publications will be a trigger for further related research and technology improvements in this important subject. "This work was supported by the NIPA (National IT Industry Promotion Agency) of Korea Grant funded by the Korean Government (Ministry of Science, ICT & Future Planning)."
Resumo:
Whilst alcohol is a common feature of many social gatherings, there are numerous immediate and long-term health and social harms associated with its abuse. Alcohol consumption is the world’s third largest risk factor for disease and disability with almost 4% of all deaths worldwide attributed to alcohol. Not surprisingly, alcohol use and binge drinking by young people is of particular concern with Australian data reporting that 39% of young people (18-19yrs) admitted drinking at least weekly and 32% drank to levels that put them at risk of alcohol-related harm. The growing market penetration and connectivity of smartphones may be an opportunities for innovation in promoting health-related self-management of substance use. However, little is known about how best to harness and optimise this technology for health-related intervention and behaviour change. This paper explores the utility and interface of smartphone technology as a health intervention tool to monitor and moderate alcohol use. A review of the psychological health applications of this technology will be presented along with the findings of a series of focus groups, surveys and behavioural field trials of several drink-monitoring applications. Qualitative and quantitative data will be presented on the perceptions, preferences and utility of the design, usability and functionality of smartphone apps to monitoring and moderate alcohol use. How these findings have shaped the development and evolution of the OnTrack app will be specifically discussed, along with future directions and applications of this technology in health intervention, prevention and promotion.
Resumo:
Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.
Resumo:
Plasmin is the primary enzyme responsible for dissolution of fibrin in the circulatory system. Plasminogen, the zymogen of plasmin is expressed ubiquitously in the human body [1], with the predominant source being the liver [2, 3]. Plasminogen is produced as an 810 amino acid protein with a 19 amino acid leader peptide, which is cleaved during secretion to produce the mature 791 amino acid one-chain zymogen. This is converted to plasmin by cleavage of the Arg561 - Val562 scissile bond [4], resulting in an active protease consisting of two disulfide linked chains. The amino-terminal heavy chain (residues Glu1-Arg561) is comprised of a plasminogen/apple/nematode (PAN) domain [5] and five kringle domains of approximately equal size [6] while the light chain (residues Val562-Asn791) contains a serine protease domain homologous to trypsin with a catalytic triad comprising His603, Asp646 and Ser741 [7]. Both plasmin and plasminogen occur in two forms, full length and a Lys77-Lys78 activated variant produced through self catalysis (Figure 1). The former exists in a tight conformation through binding of Lys50 and/or Lys62 to kringle domain 5 [8, 9] while Lys78-plasminogen assumes a more relaxed conformation rendering it more susceptible to plasmin conversion [10, 11].