81 resultados para restorative justice, facilitator, setting, field group, structural elements
Resumo:
Terrorists usually target high occupancy iconic and public buildings using vehicle borne incendiary devices in order to claim a maximum number of lives and cause extensive damage to public property. While initial casualties are due to direct shock by the explosion, collapse of structural elements may extensively increase the total figure. Most of these buildings have been or are built without consideration of their vulnerability to such events. Therefore, the vulnerability and residual capacity assessment of buildings to deliberately exploded bombs is important to provide mitigation strategies to protect the buildings' occupants and the property. Explosive loads and their effects on a building have therefore attracted significant attention in the recent past. Comprehensive and economical design strategies must be developed for future construction. This research investigates the response and damage of reinforced concrete (RC) framed buildings together with their load bearing key structural components to a near field blast event. Finite element method (FEM) based analysis was used to investigate the structural framing system and components for global stability, followed by a rigorous analysis of key structural components for damage evaluation using the codes SAP2000 and LS DYNA respectively. The research involved four important areas in structural engineering. They are blast load determination, numerical modelling with FEM techniques, material performance under high strain rate and non-linear dynamic structural analysis. The response and damage of a RC framed building for different blast load scenarios were investigated. The blast influence region for a two dimensional RC frame was investigated for different load conditions and identified the critical region for each loading case. Two types of design methods are recommended for RC columns to provide superior residual capacities. They are RC columns detailing with multi-layer steel reinforcement cages and a composite columns including a central structural steel core. These are to provide post blast gravity load resisting capacity compared to typical RC column against a catastrophic collapse. Overall, this research broadens the current knowledge of blast and residual capacity analysis of RC framed structures and recommends methods to evaluate and mitigate blast impact on key elements of multi-storey buildings.
Resumo:
Background and Purpose: - This paper focuses on the learning culture within the high performance levels of rowing. In doing so, we explore the case of an individual’s learning as he moves across athletic, coaching and administrative functions. This exploration draws on a cultural learning framework and complementary theorisings related to reflexivity. Method - This study makes use of an intellectually, morally and collaboratively challenging approach whereby one member of the research team was also the sole participant of this study. The participant’s careers as a high performance athlete, coach and administrator, coupled with his experience in conducting empirical research presented a rare opportunity to engage in collaborative research (involving degrees of insider and outsider status for each of the research team). We acknowledge that others have looked to combine roles of coach / athlete / administrator with that of researcher however few (if any) have attempted to combine them all in one project. Moreover, coupled with the approach to reflexivity adopted in this study and the authorship contributions we consider this scholarly direction uncommon. Data were comprised of recorded research conversations, a subsequently constructed learning narrative, reflections on the narrative, a stimulated reflective piece from the participant, and a final (re)construction of the participant’s story. Accordingly, data were integrated through an iterative process of thematic analysis. Results - The cultural (i.e., the ways things get done) and structural (e.g., the rules and regulations) properties of high performance rowing were found to shape both the opportunities to be present (e.g., secure a place in the crew) and to learn (e.g., learn the skills required to perform at an Olympic level). However, the individual’s personal properties were brought to bear on re-shaping the constraints such that many limitations could be overcome. In keeping with the theory of learning cultures, the culture of rowing was found to position individuals (a coxswain in this case) differentially. In a similar manner, a range of structural features was found to be important in shaping the cultural and personal elements in performance contexts. For example, the ‘field of play’ was found to be important as a structural feature (i.e., inability of coach to communicate with athletes) in shaping the cultural and personal elements of learning in competition (e.g., positioning the coxswain as an in-boat coach and trusted crewmate). Finally, the cultural and structural elements in rowing appeared to be activated by the participant’s personal elements, most notably his orientation towards quality performance. Conclusion - The participant in this study was found to be driven by the project that he cares about most and at each turn he has bent his understanding of his sport back on itself to see if he can find opportunities to learn and subsequently explore ways to improve performance. The story here emphasises the importance of learner agency, and this is an aspect that has often been missing in recent theorising about learning. In this study, we find an agent using his ‘personal emergent powers to activate the resources in the culture and structure of his sport in an attempt to improve performance. We conclude from this account that this particular high performance rowing culture is one that provided support but nonetheless encouraged those involved, to ‘figure things out’ for themselves – be it as athletes, coaches and/or administrators.
Resumo:
Differential axial shortening, distortion and deformation in high rise buildings is a serious concern. They are caused by three time dependent modes of volume change; “shrinkage”, “creep” and “elastic shortening” that takes place in every concrete element during and after construction. Vertical concrete components in a high rise building are sized and designed based on their strength demand to carry gravity and lateral loads. Therefore, columns and walls are sized, shaped and reinforced differently with varying concrete grades and volume to surface area ratios. These structural components may be subjected to the detrimental effects of differential axial shortening that escalates with increasing the height of buildings. This can have an adverse impact on other structural and non-structural elements. Limited procedures are available to quantify axial shortening, and the results obtained from them differ because each procedure is based on various assumptions and limited to few parameters. All these prompt to a need to develop an accurate numerical procedure to quantify the axial shortening of concrete buildings taking into account the important time varying functions of (i) construction sequence (ii) Young’s Modulus and (iii) creep and shrinkage models associated with reinforced concrete. General assumptions are refined to minimize variability of creep and shrinkage parameters to improve accuracy of the results. Finite element techniques are used in the procedure that employs time history analysis along with compression only elements to simulate staged construction behaviour. This paper presents such a procedure and illustrates it through an example. Keywords: Differential Axial Shortening, Concrete Buildings, Creep and Shrinkage, Construction Sequence, Finite Element Method.
Resumo:
Rates of female delinquency, especially for violent crimes, are increasing in most common law countries. At the same time the growth in cyber-bullying, especially among girls, appears to be a related global phenomenon. While the gender gap in delinquency is narrowing in Australia, United States, Canada and the United Kingdom, boys continue to dominate the youth who commit crime and have a virtual monopoly over sexually violent crimes. Indigenous youth continue to be vastly over-represented in the juvenile justice system in every Australian jurisdiction. The Indigenisation of delinquency is a persistent problem in other countries such as Canada and New Zealand. Young people who gather in public places are susceptible to being perceived as somehow threatening or riotous, attracting more than their share of public order policing. Professional football has been marred by repeated scandals involving sexual assault, violence and drunkenness. Given the cultural significance of footballers as role models to thousands, if not millions, of young men around the world, it is vitally important to address this problem. Offending Youth explores these key contemporary patterns of delinquency, the response to these by the juvenile justice agencies and moreover what can be done to address these problems. The book also analyses the major policy and legislative changes from the nineteenth to twenty first centuries, chiefly the shift the penal welfarism to diversion and restorative justice. Using original cases studied by Carrington twenty years ago, Offending Youth illustrates how penal welfarism criminalised young people from socially marginal backgrounds, especially Aboriginal children, children from single parent families, family-less children, state wards and young people living in poverty or in housing commission estates. A number of inquiries in Australia and the United Kingdom have since established that children committed to these institutions, supposedly for their own good, experienced systemic physical, sexual and psychological abuse during their institutionalisation. The book is dedicated to the survivors of these institutions who only now are receiving official recognition of the injustices they suffered. The underlying philosophy of juvenile justice has fundamentally shifted away from penal welfarism to embrace positive policy responses to juvenile crime, such as youth conferencing, cautions, warnings, restorative justice, circle sentencing and diversion examined in the concluding chapter. Offending Youth is aimed at a broad readership including policy makers, juvenile justice professionals, youth workers, families, teachers, politicians as well as students and academics in criminology, policing, gender studies, masculinity studies, Indigenous studies, justice studies, youth studies and the sociology of youth and deviance more generally.-- [from publisher website]
Resumo:
The concept of globalization has gradually permeated criminology, but more so as applied to transnational organized crime, international terrorism and policing than in addressing processes of criminal justice reform. Based on a wide range of bibliographic and web resources, this article assesses the extent to which a combination of neo-liberal assaults on the social logics of the welfare state and public provision, widespread experimentation with restorative justice and the prospect of rehabilitation through mediation and widely ratified international directives, epitomized by the United Nations Convention on the Rights of the Child, have now made it possible to talk of a global juvenile/youth justice. Conversely it also reflects on how persistent national and local divergences, together with the contradictions of contemporary reform, may preclude any aspiration for the delivery of a universal and consensual product
Resumo:
The study presents a multi-layer genetic algorithm (GA) approach using correlation-based methods to facilitate damage determination for through-truss bridge structures. To begin, the structure’s damage-suspicious elements are divided into several groups. In the first GA layer, the damage is initially optimised for all groups using correlation objective function. In the second layer, the groups are combined to larger groups and the optimisation starts over at the normalised point of the first layer result. Then the identification process repeats until reaching the final layer where one group includes all structural elements and only minor optimisations are required to fine tune the final result. Several damage scenarios on a complicated through-truss bridge example are nominated to address the proposed approach’s effectiveness. Structural modal strain energy has been employed as the variable vector in the correlation function for damage determination. Simulations and comparison with the traditional single-layer optimisation shows that the proposed approach is efficient and feasible for complicated truss bridge structures when the measurement noise is taken into account.
Resumo:
Based on the eigen crack opening displacement (COD) boundary integral equations, a newly developed computational approach is proposed for the analysis of multiple crack problems. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix. The interactions among cracks are dealt with by two parts according to the distances of cracks to the current crack. The strong effects of cracks in adjacent group are treated with the aid of the local Eshelby matrix derived from the traction BIEs in discrete form. While the relatively week effects of cracks in far-field group are treated in the iteration procedures. Numerical examples are provided for the stress intensity factors of multiple cracks, up to several thousands in number, with the proposed approach. By comparing with the analytical solutions in the literature as well as solutions of the dual boundary integral equations, the effectiveness and the efficiencies of the proposed approach are verified.
Resumo:
This showcase presents a preliminary analysis of a community service learning project designed to align more authentically with contemporary society and emerging constructs of professional knowledge. As described in the paper, the project involves a multidisciplinary group of students working collaboratively with a community organisation to find creative presponses to challenging issues concerning the organisation's identity, how it interfaces with stakeholders, and how it evidences its inclusive practice. Of particular interest is how the interdisciplinary practice of the students within a service learning context encouraged reconsideration of their world0view and their rols as future professionals. Also highlighted is the need for greater congruence between the goals of the project and the structural elements of the curriculum.
Resumo:
A newly developed computational approach is proposed in the paper for the analysis of multiple crack problems based on the eigen crack opening displacement (COD) boundary integral equations. The eigen COD particularly refers to a crack in an infinite domain under fictitious traction acting on the crack surface. With the concept of eigen COD, the multiple cracks in great number can be solved by using the conventional displacement discontinuity boundary integral equations in an iterative fashion with a small size of system matrix to determine all the unknown CODs step by step. To deal with the interactions among cracks for multiple crack problems, all cracks in the problem are divided into two groups, namely the adjacent group and the far-field group, according to the distance to the current crack in consideration. The adjacent group contains cracks with relatively small distances but strong effects to the current crack, while the others, the cracks of far-field group are composed of those with relatively large distances. Correspondingly, the eigen COD of the current crack is computed in two parts. The first part is computed by using the fictitious tractions of adjacent cracks via the local Eshelby matrix derived from the traction boundary integral equations in discretized form, while the second part is computed by using those of far-field cracks so that the high computational efficiency can be achieved in the proposed approach. The numerical results of the proposed approach are compared not only with those using the dual boundary integral equations (D-BIE) and the BIE with numerical Green's functions (NGF) but also with those of the analytical solutions in literature. The effectiveness and the efficiency of the proposed approach is verified. Numerical examples are provided for the stress intensity factors of cracks, up to several thousands in number, in both the finite and infinite plates.
Resumo:
Electrostatic spinning or electrospinning is a fiber spinning technique driven by a high-voltage electric field that produces fibers with diameters in a submicrometer to nanometer range.1 Nanofibers are typical one-dimensional colloidal objects with an increased tensile strength, whose length can achieve a few kilometers and the specific surface area can be 100 m2 g–1 or higher.2 Nano- and microfibers from biocompatible polymers and biopolymers have received much attention in medical applications3 including biomedical structural elements (scaffolding used in tissue engineering,2,4–6 wound dressing,7 artificial organs and vascular grafts8), drug and vaccine delivery,9–11 protective shields in speciality fabrics, multifunctional membranes, etc. Other applications concern superhydrophobic coatings,12 encapsulation of solid materials,13 filter media for submicron particles in separation industry, composite reinforcement and structures for nano-electronic machines.
Resumo:
A catalyst comprising one or more complex oxides having a nominal compn. as set out in formula (1): AxB1-y-zMyPzOn (1) wherein A is selected from one or more group III elements including the lanthanide elements or one or more divalent or monovalent cations; B is selected from one or more elements with at. no. 22 to 24, 40 to 42 and 72 to 75; M is selected from one or more elements with at. no. 25 to 30; P is selected from one or more elements with at. no. 44 to 50 and 76 to 83; x is defined as a no. where 0
Resumo:
The wind loading on most structural elements is made up of both an external and internal pressure. Internal pressures are also important for the design of naturally ventilated buildings. The internal pressure is the interaction between the external pressure propagating through the building envelope and any internal plant causing building pressurization. Although the external pressure field can be well defined through a series of wind tunnel tests, modeling complexities makes accurate prediction of the internal pressure difficult. For commercial testing for the determination of design cladding pressures, an internal pressure coefficient is generally assumed from wind loading standards. Several theories regarding the propagation of internal pressures through single and multiple dominant openings have been proposed for small and large flexible buildings (Harris (1990), Holmes, (1979), Liu & Saathoff (1981 ), Vickery (1986, 1994), Vickery & Bloxham (1992), Vickery & Georgiou (1991))...
Resumo:
Seagoing vessels have to undergo regular inspections, which are currently performed manually by ship surveyors. The main cost factor in a ship inspection is to provide access to the different areas of the ship, since the surveyor has to be close to the inspected parts, usually within arm's reach, either to perform a visual analysis or to take thickness measurements. The access to the structural elements in cargo holds, e.g., bulkheads, is normally provided by staging or by 'cherry-picking' cranes. To make ship inspections safer and more cost-efficient, we have introduced new inspection methods, tools, and systems, which have been evaluated in field trials, particularly focusing on cargo holds. More precisely, two magnetic climbing robots and a micro-aerial vehicle, which are able to assist the surveyor during the inspection, are introduced. Since localization of inspection data is mandatory for the surveyor, we also introduce an external localization system that has been verified in field trials, using a climbing inspection robot. Furthermore, the inspection data collected by the robotic systems are organized and handled by a spatial content management system that enables us to compare the inspection data of one survey with those from another, as well as to document the ship inspection when the robot team is used. Image-based defect detection is addressed by proposing an integrated solution for detecting corrosion and cracks. The systems' performance is reported, as well as conclusions on their usability, all in accordance with the output of field trials performed onboard two different vessels under real inspection conditions.
Resumo:
In this thesis the use of enforceable undertakings is examined as a sanction for a breach in work, health and safety legislation through the lens of organisational justice. A framework of justice types - distributive, procedural and interactional - is developed and the perceptions of the three parties to the process - the regulator, the business entity and the worker as the affected third party - are explored. It is argued that the three parties perceive the sanction to be distributively unfair, but procedurally and interactionally just.