43 resultados para preparation of composite membrane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous polylactide constructs were prepared by stereolithography, for the first time without the use of reactive diluents. Star-shaped poly(D,L-lactide) oligomers with 2, 3 and 6 arms were synthesised, end-functionalised with methacryloyl chloride and photocrosslinked in the presence of ethyl lactate as a non-reactive diluent. The molecular weights of the arms of the macromers were 0.2, 0.6, 1.1 and 5 kg/mol, allowing variation of the crosslink density of the resulting networks. Networks prepared from macromers of which the molecular weight per arm was 0.6 kg/mol or higher had good mechanical properties, similar to linear high molecular weight poly(D,L-lactide). A resin based on a 2-armed poly(D,L-lactide) macromer with a molecular weight of 0.6 kg/mol per arm (75 wt%), ethyl lactate (19 wt%), photo-initiator (6 wt%), inhibitor and dye was prepared. Using this resin, films and computer-designed porous constructs were accurately fabricated by stereolithography. Pre-osteoblasts showed good adherence to these photocrosslinked networks. The proliferation rate on these materials was comparable to that on high molecular weight poly(D,L-lactide) and tissue culture polystyrene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies interfacial debonding behavior of composite beams which include piezoelectric materials, adhesive and host beam. The focus is put on crack initiation and growth of the piezoelectric adhesive interface. Closed-form solutions of interface stresses and energy release rates are obtained for adhesive layer in the piezoelectric composite beams. Finite element analyses have been carried out to study the initiation and growth of interfaces crack for piezoelectric beams with interface element by ANSYS, in which the interface element of FE model is based on the cohesive zone models to characterize the fracture behavior of the interfacial debonding. The results have been compared with analystical solution, and the influence of different geometry and material parameters on the interfacial behavior of piezoelectric composite beams have been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium Phosphate ceramic has been widely used in bone tissue engineering due to its excellent biocompatibility and biodegradability. However, low mechanical properties and biodegradability limit their potential applications. In this project, hydroxyapatite (HA) and calcium phosphate bioglass were used to produce porous tri-calcium phosphate (TCP) bio-ceramic scaffolds. It was found that porous TCP bioceramic could be obtained when 20wt percent bioglass addition and sintered in 1400 degrees celsius for 3 h. Significantly higher compressive strength (9.98 MPa) was achieved in the scaffolds as compared to those produced from tCP power (<3 MPa). The biocompatibility of the scaffold was also estimated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper begins by identifying the key attributes for future STEM teachers. Then based on a review of the literature, a framework for informing reforms to pre-service teacher education programs to facilitate the development of these attributes in future STEM teachers is presented and discussed. This framework consists of a set of three principles together with eight strategies for the operationalization of these principles. During the discussion, the implications for the structure and implementation of future pre-service STEM teacher education programs are explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, light gauge steel frame (LSF) wall systems are increasingly used in the building industry. They are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. A composite LSF wall panel system was developed recently, where an insulation layer was used externally between the two plasterboards to improve the fire performance of LSF wall panels. In this research, finite element thermal models of the new composite panels were developed using a finite element program, SAFIR, to simulate their thermal performance under both standard and Eurocode design fire curves. Suitable apparent thermal properties of both the gypsum plasterboard and insulation materials were proposed and used in the numerical models. The developed models were then validated by comparing their results with available standard fire test results of composite panels. This paper presents the details of the finite element models of composite panels, the thermal analysis results in the form of time-temperature profiles under standard and Eurocode design fire curves and their comparisons with fire test results. Effects of using rockwool, glass fibre and cellulose fibre insulations with varying thickness and density were also investigated, and the results are presented in this paper. The results show that the use of composite panels in LSF wall systems will improve their fire rating, and that Eurocode design fires are likely to cause severe damage to LSF walls than standard fires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced composite materials offer remarkable potential in the strengthening of Civil Engineering structures. This research is targeted to provide in depth knowledge and understanding of bond characteristics of advanced and corrosion resistant material carbon fibre reinforced polymer (CFRP) that has a unique design tailor-ability and cost effective nature. The objective of this research is to investigate and compare the bonding mechanism between CFRP strengthened single and double strap steel joints. Investigations have been made in regards to failure mode, ultimate load and effective bond length for CFRP strengthened double and single strap joints. A series of tensile tests were conducted with different bond lengths for both type of joints. The bond behaviour of these specimens was further investigated by using nonlinear finite element analysis. Finally a bilinear relationship of shear stress-slip has been proposed by using the Finite element model for single and double strap joints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, Portable Water-filled barriers (PWFB) face challenges such as large lateral displacements, tearing and breakage during impact; especially at higher speeds. This study explores the use of composite action to enhance the crashworthiness of PWFBs and enable their usage at higher speeds. Initially, energy absorption capability of water in PWFB is investigated. Then, composite action of the PWFB with the introduction of steel frame is considered to evaluate its enhanced impact performance. Findings of the study show that the initial height of the impact must be lower than the free surface level of water in a PWFB in order for the water to provide significant crash energy absorption. In general, an impact of a road barrier with 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacements and sloshing response. Information from this research will aid in the design of new generation roadside safety structures aimed to increase safety in modern roadways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, there are challenges when using portable water-filled barriers (PWFBs) such as large lateral displacements as well as tearing and breakage during impact, especially at higher speeds. In this study, the authors explore the use of composite action to enhance the crashworthiness of PWFBs and enable their use at higher speeds. Initially, we investigated the energy absorption capability of water in PWFB. Then, we considered the composite action of a PWFB with the introduction of a steel frame to evaluate its impact on performance. Findings of the study show that the initial height of impact must be lower than the free surface level of water in a PWFB for the water to provide significant crash energy absorption. In general, impact of a road barrier that is 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacement and sloshing response. Information from this research will aid in the design of next generation roadside safety structures aimed to increase safety on modern roadways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generic method for the synthesis of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) charge-transfer complexes on both conducting and nonconducting substrates is achieved by photoexcitation of TCNQ in acetonitrile in the presence of a sacrificial electron donor and the relevant metal cation. The photochemical reaction leads to reduction of TCNQ to the TCNQ- monoanion. In the presence of Mx+(MeCN), reaction with TCNQ-(MeCN) leads to deposition of Mx+[TCNQ]x crystals onto a solid substrate with morphologies that are dependent on the metal cation. Thus, CuTCNQ phase I photocrystallizes as uniform microrods, KTCNQ as microrods with a random size distribution, AgTCNQ as very long nanowires up to 30 μm in length and with diameters of less than 180 nm, and Co[TCNQ]2(H2O)2 as nanorods and wires. The described charge-transfer complexes have been characterized by optical and scanning electron microscopy and IR and Raman spectroscopy. The CuTCNQ and AgTCNQ complexes are of particular interest for use in memory storage and switching devices. In principle, this simple technique can be employed to generate all classes of metal−TCNQ complexes and opens up the possibility to pattern them in a controlled manner on any type of substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite steel-concrete structures experience non-linear effects which arise from both instability-related geometric non-linearity and from material non-linearity in all of their component members. Because of this, conventional design procedures cannot capture the true behaviour of a composite frame throughout its full loading range, and so a procedure to account for those non-linearities is much needed. This paper therefore presents a numerical procedure capable of addressing geometric and material non-linearities at the strength limit state based on the refined plastic hinge method. Different material non-linearity for different composite structural components such as T-beams, concrete-filled tubular (CFT) and steel-encased reinforced concrete (SRC) sections can be treated using a routine numerical procedure for their section properties in this plastic hinge approach. Simple and conservative initial and full yield surfaces for general composite sections are proposed in this paper. The refined plastic hinge approach models springs at the ends of the element which are activated when the surface defining the interaction of bending and axial force at first yield is reached; a transition from the first yield interaction surface to the fully plastic interaction surface is postulated based on a proposed refined spring stiffness, which formulates the load-displacement relation for material non-linearity under the interaction of bending and axial actions. This produces a benign method for a beam-column composite element under general loading cases. Another main feature of this paper is that, for members containing a point of contraflexure, its location is determined with a simple application of the method herein and a node is then located at this position to reproduce the real flexural behaviour and associated material non-linearity of the member. Recourse is made to an updated Lagrangian formulation to consider geometric non-linear behaviour and to develop a non-linear solution strategy. The formulation with the refined plastic hinge approach is efficacious and robust, and so a full frame analysis incorporating geometric and material non-linearity is tractable. By way of contrast, the plastic zone approach possesses the drawback of strain-based procedures which rely on determining plastic zones within a cross-section and which require lengthwise integration. Following development of the theory, its application is illustrated with a number of varied examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper emphasizes material nonlinear effects on composite beams with recourse to the plastic hinge method. Numerous combinations of steel and concrete sections form arbitrary composite sections. Secondly, the material properties of composite beams vary remarkably across its section from ductile steel to brittle concrete. Thirdly, concrete is weak in tension, so composite section changes are dependent on load distribution. To this end, the plastic zone approach is convenient for inelastic analysis of composite sections that can evaluate member resistance, including material nonlinearities, by routine numerical integration with respect to every fiber across the composite section. As a result, many researchers usually adopt the plastic zone approach for numerical inelastic analyses of composite structures. On the other hand, the plastic hinge method describes nonlinear material behaviour of an overall composite section integrally. Consequently, proper section properties for use in plastic hinge spring stiffness are required to represent the material behaviour across the arbitrary whole composite section. In view of numerical efficiency and convergence, the plastic hinge method is superior to the plastic zone method. Therefore, based on the plastic hinge approach, how to incorporate the material nonlinearities of the arbitrary composite section into the plastic hinge stiffness formulation becomes a prime objective of the present paper. The partial shear connection in this paper is by virtue of the effective flexural rigidity as AISC 1993 [American Institute of Steel Construction (AISC). Load and resistance factor design specifications. 2nd ed., Chicago; 1993]. Nonlinear behaviour of different kinds of composite beam is investigated in this paper, including two simply supported composite beams, a cantilever and a two span continuous composite beam.