840 resultados para powered "swing-by"
Resumo:
Draglines are very large machines that are used to remove overburden in open-cut coal mines. This paper outlines the design of a computer control system to implement an automated swing cycle on a production dragline. Subsystems and sensors have been developed to satisfy the constraints imposed by the task, the harsh operating environment and the mine's production requirements.
Resumo:
Dragline Swing to Dump Automation By Peter Corke, CSIRO Manufacturing Technology/CRC for Mining Technology and Equipment (CMTE) Peter Corke presented a case study of a project to automate the dragline swing to dump operation. The project is funded by ACARP, BHP Coal, Pacific Coal and the CMTE and is being carried out on a dragline at Pacific Coal's Meandu mine near Brisbane. Corke began by highlighting that the minerals industry makes extensive use of large, mechanised machines. However, unlike other industries, mining has not adopted automation and most machines are controlled by human operators on board the machine itself. Choosing an automation target The dragline automation was chosen because: ò draglines are one of the biggest capital assets in a mine; ò performance between operators vary significantly, so improved capital utilisation is possible; ò the dragline is often the bottleneck in production; ò a large part of the operation cycle is spent swinging from dig to dump; and ò it is technically feasible. There has been a history of drag line automation projects, none with great success.
Resumo:
There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ
Resumo:
This research deals with the development of a Solar-Powered UAV designed for remote sensing, in particular to the development of the autopilot sub-system and path planning. The design of the Solar-Powered UAS followed a systems engineering methodology, by first defining system architecture, and selecting each subsystem. Validation tests and integration of autopilot is performed, in order to evaluate the performances of each subsystem and to obtain a global operational system for data collection missions. The flight tests planning and simulation results are also explored in order to verify the mission capabilities using an autopilot on a UAS. The important aspect of this research is to develop a Solar-Powered UAS for the purpose of data collection and video monitoring, especially data and images from the ground; transmit to the GS (Ground Station), segment the collected data, and afterwards analyze it with a Matlab code.
Resumo:
From Kurt Vonnegut to Stephen King, many novelists use metanarrative techniques to insert fictional versions of themselves in the stories they tell. The function of deploying such techniques is often to draw attention to the liminal space between the fictional constructs inherent in the novel as a form, and the real world from which the constructs draw inspiration, and indeed, are read by an audience. For emerging writers working in short form narratives, however, the structural demands of the short story or flash fiction make the use of similar techniques problematic in the level of depth to which they can be deployed. ‘Swing Low’ is the fifth in a series of short stories that work to overcome the structural limitations of a succinct form by developing a fractured fictional version of the author over a number of pieces and published across a range of sites. The accumulative affect is a richer metanarrative textual arrangement that also allows for the individual short stories to function independently.
Resumo:
Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.
Resumo:
The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.
An Intervention Study to Improve the Transfer of ICU Patients to the Ward - Evaluation by ICU Nurses