301 resultados para potential distribution
Resumo:
Agent-based modelling (ABM), like other modelling techniques, is used to answer specific questions from real world systems that could otherwise be expensive or impractical. Its recent gain in popularity can be attributed to some degree to its capacity to use information at a fine level of detail of the system, both geographically and temporally, and generate information at a higher level, where emerging patterns can be observed. This technique is data-intensive, as explicit data at a fine level of detail is used and it is computer-intensive as many interactions between agents, which can learn and have a goal, are required. With the growing availability of data and the increase in computer power, these concerns are however fading. Nonetheless, being able to update or extend the model as more information becomes available can become problematic, because of the tight coupling of the agents and their dependence on the data, especially when modelling very large systems. One large system to which ABM is currently applied is the electricity distribution where thousands of agents representing the network and the consumers’ behaviours are interacting with one another. A framework that aims at answering a range of questions regarding the potential evolution of the grid has been developed and is presented here. It uses agent-based modelling to represent the engineering infrastructure of the distribution network and has been built with flexibility and extensibility in mind. What distinguishes the method presented here from the usual ABMs is that this ABM has been developed in a compositional manner. This encompasses not only the software tool, which core is named MODAM (MODular Agent-based Model) but the model itself. Using such approach enables the model to be extended as more information becomes available or modified as the electricity system evolves, leading to an adaptable model. Two well-known modularity principles in the software engineering domain are information hiding and separation of concerns. These principles were used to develop the agent-based model on top of OSGi and Eclipse plugins which have good support for modularity. Information regarding the model entities was separated into a) assets which describe the entities’ physical characteristics, and b) agents which describe their behaviour according to their goal and previous learning experiences. This approach diverges from the traditional approach where both aspects are often conflated. It has many advantages in terms of reusability of one or the other aspect for different purposes as well as composability when building simulations. For example, the way an asset is used on a network can greatly vary while its physical characteristics are the same – this is the case for two identical battery systems which usage will vary depending on the purpose of their installation. While any battery can be described by its physical properties (e.g. capacity, lifetime, and depth of discharge), its behaviour will vary depending on who is using it and what their aim is. The model is populated using data describing both aspects (physical characteristics and behaviour) and can be updated as required depending on what simulation is to be run. For example, data can be used to describe the environment to which the agents respond to – e.g. weather for solar panels, or to describe the assets and their relation to one another – e.g. the network assets. Finally, when running a simulation, MODAM calls on its module manager that coordinates the different plugins, automates the creation of the assets and agents using factories, and schedules their execution which can be done sequentially or in parallel for faster execution. Building agent-based models in this way has proven fast when adding new complex behaviours, as well as new types of assets. Simulations have been run to understand the potential impact of changes on the network in terms of assets (e.g. installation of decentralised generators) or behaviours (e.g. response to different management aims). While this platform has been developed within the context of a project focussing on the electricity domain, the core of the software, MODAM, can be extended to other domains such as transport which is part of future work with the addition of electric vehicles.
Resumo:
Electric Energy Storage (EES) is considered as one of the promising options for reducing the need for costly upgrades in distribution networks in Queensland (QLD). However, It is expected, the full potential for storage for distribution upgrade deferral cannot be fully realized due to high cost of EES. On the other hand, EES used for distribution deferral application can support a variety of complementary storage applications such as energy price arbitrage, time of use (TOU) energy cost reduction, wholesale electricity market ancillary services, and transmission upgrade deferral. Aggregation of benefits of these complementary storage applications would have the potential for increasing the amount of EES that may be financially attractive to defer distribution network augmentation in QLD. In this context, this paper analyzes distribution upgrade deferral, energy price arbitrage, TOU energy cost reduction, and integrated solar PV-storage benefits of EES devices in QLD.
Resumo:
This project assessed the potential impact of untreated sewage release in a near-shore marine environment of Antarctica through the distribution and characterisation of the faecal indicator bacteria Enterococcus. Antibiotic resistance and genome sequencing analyses revealed that enterococci resistant to multiple antibiotics closely related to clinical pathogens were introduced to the pristine Antarctic environment by Australia's Davis station.
Resumo:
Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of Distributed Generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. This paper addresses the issue of improving the network voltage profile in distribution systems by installing a DG of the most suitable size, at a suitable location. An analytical approach is developed based on algebraic equations for uniformly distributed loads to determine the optimal operation, size and location of the DG in order to achieve required levels of network voltage. The developed method is simple to use for conceptual design and analysis of distribution system expansion with a DG and suitable for a quick estimation of DG parameters (such as optimal operating angle, size and location of a DG system) in a radial network. A practical network is used to verify the proposed technique and test results are presented.
Resumo:
Random blinking is a major problem on the way to successful applications of semiconducting nanocrystals in optoelectronics and photonics, which until recently had neither a practical solution nor a theoretical interpretation. An experimental breakthrough has recently been made by fabricating non-blinking Cd1-xZnxSe/ZnSe graded nanocrystals [Wang et al., Nature, 2009, 459, 686]. Here, we (1) report an unequivocal and detailed theoretical investigation to understand the properties (e.g., profile) of the potential-well and the distribution of Zn content with respect to the nanocrystal radius and (2) develop a strategy to find the relationship between the photoluminescence (PL) energy peaks and the potential-well due to Zn distribution in nanocrystals. It is demonstrated that the non-square-well potential can be varied in such a way that one can indeed control the PL intensity and the energy-level difference (PL energy peaks) accurately. This implies that one can either suppress the blinking altogether, or alternatively, manipulate the PL energy peaks and intensities systematically to achieve a controlled non-random intermittent luminescence. The approach developed here is based on the ionization energy approximation and as such is generic and can be applied to any non-free-electron nanocrystals.
Resumo:
BACKGROUND AND OBJECTIVES Polymorphisms of the VEGF gene are known to affect the biological behaviour of cancers but have seldom been studied in thyroid cancer. The aim of the current study is to evaluate the prevalence and relevance of VEGF-A polymorphisms and mRNA expression in papillary thyroid carcinoma (PTC). MATERIALS AND METHODS Genomic DNA and total RNA were isolated from paraffin-embedded tissue from 91 PTC (51 conventional PTC and 40 follicular variant) and 78 control thyroid tissues. Three DNA polymorphisms (+936C > T, +405C > G and -141A > C) in the 3' and 5' untranslated region (3'-UTR, 5'-UTR) of VEGF-A were studied using PCR and RFLP. Also, the mRNA expression of VEGF-A in these tissues was studied by real-time PCR. RESULTS Distribution of polymorphisms in the 5'-UTR (VEGF-VEGF -141A > C and +405C > G) and 3'-UTR (VEGF +936C > T) were all significantly different in PTC and benign thyroid tissue (p = 0.0001, 0.001 and 0.028 respectively). The VEGF -141 C allele was more common in PTC with lymph node metastases (p = 0.026). VEGF + 405 Galleles andVEGF +936 CC genotype were more common in PTC of advanced pathological staging (p = 0.018 and 0.017 respectively). Also, increased expression of VEGF-A mRNA was noted in PTC compared to control (p = 0.009). Within the group of patients with conventional PTC, those with lymph nodal metastases had a higher level of VEGF-A mRNA expression than other patients (p = 0.0003). CONCLUSION These findings suggest that VEGF polymorphisms and mRNA expression may predict the aggressiveness behaviour of thyroid cancer.
Resumo:
Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2’–deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.
Resumo:
Background The ghrelin axis is involved in the regulation of metabolism, energy balance, and the immune, cardiovascular and reproductive systems. The manipulation of this axis has potential for improving economically valuable traits in production animals, and polymorphisms in the ghrelin (GHRL) and ghrelin receptor (GHSR) genes have been associated with growth and carcass traits. Here we investigate the structure and expression of the ghrelin gene (GHRL) in sheep, Ovis aries. Results We identify two ghrelin mRNA isoforms, which we have designated Δex2 preproghrelin and Δex2,3 preproghrelin. Expression of Δex2,3 preproghrelin is likely to be restricted to ruminants, and would encode truncated ghrelin and a novel C-terminal peptide. Both Δex2 preproghrelin and canonical preproghrelin mRNA isoforms were expressed in a range of tissues. Expression of the Δex2,3 preproghrelin isoform, however, was restricted to white blood cells (WBC; where the wild-type preproghrelin isoform is not co-expressed), and gastrointestinal tissues. Expression of Δex2 preproghrelin and Δex2,3 preproghrelin mRNA was elevated in white blood cells in response to parasitic worm (helminth) infection in genetically susceptible sheep, but not in resistant sheep. Conclusions The restricted expression of the novel preproghrelin variants and their distinct WBC expression pattern during parasite infection may indicate a novel link between the ghrelin axis and metabolic and immune function in ruminants.
Resumo:
This work examined the suitability of the PAGAT gel dosimeter for use in dose distribution measurements around high-density implants. An assessment of the gels reactivity with various metals was performed and no corrosive effects were observed. An artefact reduction technique was also investigated in order to minimise scattering of the laser light in the optical CT scans. The potential for attenuation and backscatter measurements using this gel dosimeter were examined for a temporary tissue expander's internal magnetic port.
Resumo:
An expanding education market targeted through ‘bridging material’ enabling cineliteracies has the potential to offer Australian producers with increased distribution opportunities, educators with targeted teaching aids and students with enhanced learning outcomes. For Australian documentary producers, the key to unlocking the potential of the education sector is engaging with its curriculum-based requirements at the earliest stages of pre-production. Two key mechanisms can lead to effective educational engagement; the established area of study guides produced in association with the Australian Teachers of Media (ATOM) and the emerging area of philanthropic funding coordinated by the Documentary Australia Foundation (DAF). DAF has acted as a key financial and cultural philanthropic bridge between individuals, foundations, corporations and the Australian documentary sector for over 14 years. DAF does not make or commission films but through management and receipt of grants and donations provides ‘expertise, information, guidance and resources to help each sector work together to achieve their goals’. The DAF application process also requires film-makers to detail their ‘Education and Outreach Strategy’ for each film with 582 films registered and 39 completed as of June 2014. These education strategies that can range from detailed to cursory efforts offer valuable insights into the Australian documentary sector's historical and current expectations of education as a receptive and dynamic audience for quality factual content. A recurring film-maker education strategy found in the DAF data is an engagement with ATOM to create a study guide for their film. This study guide then acts as a ‘bridging material’ between content and education audience. The frequency of this effort suggests these study guides enable greater educator engagement with content and increased interest and distribution of the film to educators. The paper Education paths for documentary distribution: DAF, ATOM and the study guides that bind them will address issues arising out of the changing needs of the education sector and the impact targeting ‘cineliteracy’ outcomes may have for Australian documentary distribution.
Resumo:
Integration of small-scale electricity generators, known as distributed generation (DG), into the distribution networks has become increasingly popular at the present. This tendency together with the falling price of the synchronous-type generator has potential to give DG a better chance at participating in the voltage regulation process together with other devices already available in the system. The voltage control issue turns out to be a very challenging problem for the distribution engineers since existing control coordination schemes would need to be reconsidered to take into account the DG operation. In this paper, we propose a control coordination technique, which is able to utilize the ability of DG as a voltage regulator and, at the same time, minimize interaction with other active devices, such as an on-load tap changing transformer and a voltage regulator. The technique has been developed based on the concept of control zone, line drop compensation, dead band, as well as the choice of controllers' parameters. Simulations carried out on an Australian system show that the technique is suitable and flexible for any system with multiple regulating devices including DG.
Resumo:
We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD)". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.
Resumo:
Recent research has identified marine molluscs as an excellent source of omega-3 long-chain polyunsaturated fatty acids (lcPUFAs), based on their potential for endogenous synthesis of lcPUFAs. In this study we generated a representative list of fatty acyl desaturase (Fad) and elongation of very long-chain fatty acid (Elovl) genes from major orders of Phylum Mollusca, through the interrogation of transcriptome and genome sequences, and various publicly available databases. We have identified novel and uncharacterised Fad and Elovl sequences in the following species: Anadara trapezia, Nerita albicilla, Nerita melanotragus, Crassostrea gigas, Lottia gigantea, Aplysia californica, Loligo pealeii and Chlamys farreri. Based on alignments of translated protein sequences of Fad and Elovl genes, the haeme binding motif and histidine boxes of Fad proteins, and the histidine box and seventeen important amino acids in Elovl proteins, were highly conserved. Phylogenetic analysis of aligned reference sequences was used to reconstruct the evolutionary relationships for Fad and Elovl genes separately. Multiple, well resolved clades for both the Fad and Elovl sequences were observed, suggesting that repeated rounds of gene duplication best explain the distribution of Fad and Elovl proteins across the major orders of molluscs. For Elovl sequences, one clade contained the functionally characterised Elovl5 proteins, while another clade contained proteins hypothesised to have Elovl4 function. Additional well resolved clades consisted only of uncharacterised Elovl sequences. One clade from the Fad phylogeny contained only uncharacterised proteins, while the other clade contained functionally characterised delta-5 desaturase proteins. The discovery of an uncharacterised Fad clade is particularly interesting as these divergent proteins may have novel functions. Overall, this paper presents a number of novel Fad and Elovl genes suggesting that many mollusc groups possess most of the required enzymes for the synthesis of lcPUFAs.
Resumo:
Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K(+), inward rectifying K(+), L-type Ca(2+), and Na(+)/K(+) pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation.
Resumo:
BACKGROUND: Dengue viruses (DENV) are the causative agents of dengue, the world's most prevalent arthropod-borne disease with around 40% of the world's population at risk of infection annually. Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits replication of the virus in the mosquito. The Wolbachia strain wMel, which has been introduced into the mosquito vector, Aedes aegypti, has been shown to invade and spread to near fixation in field releases. Standard measures of Wolbachia's efficacy for blocking virus replication focus on the detection and quantification of virus in mosquito tissues. Examining the saliva provides a more accurate measure of transmission potential and can reveal the extrinsic incubation period (EIP), that is, the time it takes virus to arrive in the saliva following the consumption of DENV viremic blood. EIP is a key determinant of a mosquito's ability to transmit DENVs, as the earlier the virus appears in the saliva the more opportunities the mosquito will have to infect humans on subsequent bites. METHODOLOGY/PRINCIPAL FINDINGS: We used a non-destructive assay to repeatedly quantify DENV in saliva from wMel-infected and Wolbachia-free wild-type control mosquitoes following the consumption of a DENV-infected blood meal. We show that wMel lengthens the EIP, reduces the frequency at which the virus is expectorated and decreases the dengue copy number in mosquito saliva as compared to wild-type mosquitoes. These observations can at least be partially explained by an overall reduction in saliva produced by wMel mosquitoes. More generally, we found that the concentration of DENV in a blood meal is a determinant of the length of EIP, saliva virus titer and mosquito survival. CONCLUSIONS/SIGNIFICANCE: The saliva-based traits reported here offer more disease-relevant measures of Wolbachia's effects on the vector and the virus. The lengthening of EIP highlights another means, in addition to the reduction of infection frequencies and DENV titers in mosquitoes, by which Wolbachia should operate to reduce DENV transmission in the field.