58 resultados para piezoelectric composites
Resumo:
The performance criteria of piezoelectric polymers based on polyvinylidene flouride (PVDF) in complex space environments have been evaluated. Thin films of these materials are being explored as in-situ responsive materials for large aperture space-based telescopes with the shape deformation and optical features dependent on long-term deformation and optical features dependent on long-term degradation effects, mainly due to thermal cycling, vacuum UV exposure and atomic oxygen. A summary of previous studies related to materials testing and performance prediction based on a laboratory environment is presented. The degradation pathways are a combination of molecular chemical changes primarily induced via radiative damage and physical degradation processes due to temperature and atomic oxygen exposure resulting in depoling, loss of orientation and surface erosing. Experimental validation for these materials to be used in space is being conducted as part of MISSE-6 (Materials International Space Station Experiment) with an overview of the experimental strategies discussed here.
Resumo:
The effects of simulated low earth orbit conditions on vinylidene-fluoride based thin-film piezoelectrics for use in lightweight, large surface area spacecraft such as telescope mirrors and antennae is presented. The environmental factors considered as having the greatest potential to cause damage are temperature, atomic oxygen and vacuum UV radiation. Using the piezoelectric strain coefficients and bimorph deflection measurements the piezoelectric performance over the temperature range -100 to +150°C was studied. The effects of simultaneous AO/VUV exposure were also examined and films characterized by their piezoelectric, surface, and thermal properties. Two fluorinated piezoelectric polymers, poly(vinylidene fluoride) and poly(vinylidene fluoride-co-trifluoroethylene), were adversely affected at elevated temperatures due to depoling caused by randomization of the dipole orientation, while AO/VUV contributed little to depoling but did cause significant surface erosion and, in the case of P(VDF-TrFE), bulk crosslinking. These results highlight the importance of materials selection for use in space environments.
Resumo:
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies.
Resumo:
Fracture behavior of Cu-Ni laminate composites has been investigated by tensile testing. It was found that as the individual layer thickness decreases from 100 to 20nm, the resultant fracture angle of the Cu-Ni laminate changes from 72 degrees to 50 degrees. Cross-sectional observations reveal that the fracture of the Ni layers transforms from opening to shear mode as the layer thickness decreases while that of the Cu layers keeps shear mode. Competition mechanisms were proposed to understand the variation in fracture mode of the metallic laminate composites associated with length scale.
Resumo:
Bridges are important infrastructures of all nations and are required for transportation of goods as well as human. A catastrophic failure can result in loss of lives and enormous financial hardship to the nation. Hence, there is an urgent need to monitor our infrastructures to prolong their life span, at the same time catering for heavier and faster moving traffics. Although various kinds of sensors are now available to monitor the health of the structures due to corrosion, they do not provide permanent and long term measurements. This paper investigates the fabrication of Carbon Nanotube (CNT) based composite sensors for structural health monitoring. The CNTs, a key material in nanotechnology has aroused great interest in the research community due to their remarkable mechanical, electrochemical, piezoresistive and other physical properties. Multi-wall CNT (MWCNT)/Nafion composite sensors were fabricated to evaluate their electrical properties when subjected to chemical solutions, to simulate a chemical reaction due to corrosion and real life corrosion experimental tests. The electrical resistance of the sensor electrode was dramatically changed due to corrosion. The novel sensor is expected to effectively detect corrosion in structures based on the measurement of electrical impedances of the CNT composite.