207 resultados para pelvic floor


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1996, ther provision of a refuge floor has been a mandatory feature for all new tall buildings in Hong Kong. These floors are designed to provide for building occupants a fire safe environment that is also free from smoke. However, the desired cross ventilation on these floors to achieve the removal of smoke, assumed by the Building Codes of Hong Kong, is still being questioned so that a further scientific study of the wind-induced ventilation of a refuge fllor is needed. This paper presents an investigation into this issue. The developed computational technique used in this paper was adopted to study the wind-induced natural ventilation on a refuge floor. The aim of the investigation was to establish whether a refuge floor with a cetnral core and having cross ventilation produced by only two open opposite external side walls on the refuge floor would provide the required protection in all situations taking into account behaviour of wind due to different floor heights, wall boundary conditions and turbulence intensity profiles. The results revealed that natural ventilation can be increased by increasng the floor heigh provided the wind angle to the building is less than 90 degrees. The effectiveness of the solution was greatly reduced when the wind was blowing at 90 degrees to the refuge floor opening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While raised floors as a building component has been around since the 70's, its application in terms of a holistic system in the fit-out of commercial office buildings has not been fully embraced due to some inherent problems and negative perceptions of the stakeholders involved. Today, the new generation of raised floor systems(RFS) offers a suite of innovative and integrated products and solutions, and as such are not only suitable for the changing office space requirements, but also capable of meeting tbe smart and sustainable challenges, which are becoming the prerequisite in the refurbishment of existing buildings. As there has been a prediction for continued growth in refurbishment projects in major cities around the globe, RFS as an alternative methodology warrants new examination and highlight. This paper introduces research recently completed in Australia that provided a holistic approach to the application of RFS enabled by intelligent building technologies, and examined key issues of project development when refurbishing commercial office buildings. It focuses on the constructability of RFS, and how it will respond to smart feature requirements in buildings while extending service life, meeting new organisational change and workplace health needs for applications in today's office environment. It also introduces key project procurement issues and the integrated decision support when dealing with the refurbishment of office buildings. The paper recommends procurement strategies as well as the justification of adopting the RFS technology in the Australian office building sector. Given the current economic downturn, refitting as opposed to new build .projects will come onto the spotlight. This paper will provide valuable information for building owners and developers alike when contemplating the retrofit of office buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Uterine Papillary Serous Carcinoma (UPSC) is uncommon and accounts for less than 5% of all uterine cancers. Therefore the majority of evidence about the benefits of adjuvant treatment comes from retrospective case series. We conducted a prospective multi-centre non-randomized phase 2 clinical trial using four cycles of adjuvant paclitaxel plus carboplatin chemotherapy followed by pelvic radiotherapy, in order to evaluate the tolerability and safety of this approach. Methods This trial enrolled patients with newly diagnosed, previously untreated patients with stage 1b-4 (FIGO-1988) UPSC with a papillary serous component of at least 30%. Paclitaxel (175 mg/m2) and carboplatin (AUC 6) were administered on day 1 of each 3-week cycle for 4 cycles. Chemotherapy was followed by external beam radiotherapy to the whole pelvis (50.4 Gy over 5.5 weeks). Completion and toxicity of treatment (Common Toxicity Criteria, CTC) and quality of life measures were the primary outcome indicators. Results Twenty-nine of 31 patients completed treatment as planned. Dose reduction was needed in 9 patients (29%), treatment delay in 7 (23%), and treatment cessation in 2 patients (6.5%). Hematologic toxicity, grade 3 or 4 occurred in 19% (6/31) of patients. Patients' self-reported quality of life remained stable throughout treatment. Thirteen of the 29 patients with stages 1–3 disease (44.8%) recurred (average follow up 28.1 months, range 8–60 months). Conclusion This multimodal treatment is feasible, safe and tolerated reasonably well and would be suitable for use in multi-institutional prospective randomized clinical trials incorporating novel therapies in patients with UPSC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich components have emerged as light weight, efficient, economical, recyclable and reusable building systems which provide an alternative to both stiffened steel and reinforced concrete. These components are made of composite materials in which two metal face plates or Glassfibre Reinforced Cement (GRC) layers are bonded and form a sandwich with light weight compact polyurethane (PU) elastomer core. Existing examples of product applications are light weight sandwich panels for walls and roofs, Sandwich Plate System (SPS) for stadia, arena terraces, naval construction and bridges and Domeshell structures for dome type structures. Limited research has been conducted to investigate performance characteristics and applicability of sandwich or hybrid materials as structural flooring systems. Performance characteristics of Hybrid Floor Plate Systems comprising GRC, PU and Steel have not been adequately investigated and quantified. Therefore there is very little knowledge and design guidance for their application in commercial and residential buildings. This research investigates performance characteristics steel, PU and GRC in Hybrid Floor Plate Systems (HFPS) and develops a new floor system with appropriate design guide lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the vibration characteristics of a concrete-steel composite multi-panel floor structure; the use of these structures is becoming more common. These structures have many desirable properties but are prone to excessive and complex vibration, which is not currently well understood. Existing design codes and practice guides provide generic advice or simple techniques that cannot address the complex vibration in these types of low-frequency structures. The results of this study show the potential for an adverse dynamic response from higher and multi-modal excitation influenced by human-induced pattern loading, structural geometry, and activity frequency. Higher harmonics of the load frequency are able to excite higher modes in the composite floor structure in addition to its fundamental mode. The analytical techniques used in this paper can supplement the current limited code and practice guide provisions for mitigating the impact of human-induced vibrations in these floor structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to gain a competitive edge in the market, automotive manufacturers and automotive seat suppliers have identified seat ergonomics for further development to improve overall vehicle comfort. Adjustable lumbar support devices have been offered since long as comfort systems in either a 2-way or 4-way adjustable configuration, although their effect on lumbar strain is not well documented. The effect of a lumbar support on posture and muscular strain, and therefore the relationship between discomfort and comfort device parameter settings, requires clarification. The aim of this paper is to study the effect of a 4-way lumbar support on lower trunk and pelvis muscle activity, pelvic tilt and spine curvature during a car seating activity. 10 healthy subjects (5 m/f; age 19-39) performed a seating activity in a passenger vehicle with seven different static lumbar support positions. The lumbar support was tested in 3 different height positions in relation to the seatback surface centreline (high, centre, low), each having 2 depths positions (lumbar prominence). An extra depth position was added for the centre position. Posture data were collected using a VICON MX motion capture system and NORAXON DTS goniometers and inclinometer. A rigid-body model of an adjustable car seat with four-way adjustable lumbar support was constructed in UGS Siemens NX and connected to a musculoskeletal model of a seated-human, modelled in AnyBody. Wireless electromyography (EMG) was used to calibrate the musculoskeletal model and assess the relationship between (a) muscular strain and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface), (b) hip joint moment and lumbar prominence (normal to seatback surface) respective to lumbar height (alongside seatback surface) and (c) pelvic tilt and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface). This study was based on the assumption that the musculoskeletal human model was seated at the correct R-Point (SgRP), determined via the occupant packaging toolkit in the JACK digital human model. The effect of the interaction between the driver/car-seat has been investigated for factors resulting from the presence and adjustment of a 4-way lumbar support. The results obtained show that various seat adjustments, and driver’s lumbar supports can have complex influence on the muscle activation, joint forces and moments, all of which can affect the comfort perception of the driver. This study enables the automotive industry to optimise passenger vehicle seat development and design. It further more supports the evaluation of static postural and dynamic seat comfort in normal everyday driving tasks and can be applied for future car design to reduce investment and improve comfort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently developed cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their light weight and cost-effectiveness. Another beneficial characteristic is that they allow torsionally rigid rectangular flanges to be combined with economical fabrication processes. Currently, there is significant interest in the use of LSB sections as flexural members in floor joist systems. When used as floor joists, these sections require openings in the web to provide access for inspection and other services. At present, however, there is no design method available that provides accurate predictions of the moment capacities of LSBs with web openings. This paper presents the results of an investigation of the buckling and ultimate strength behaviour of LSB flexural members with web openings. A detailed fine element analysis (FEA)-based parametric study was conducted with the aim of developing appropriate design rules and making recommendations for the safe design of LSB floor joists. The results include the required moment capacity curves for LSB sections with a range of web opening combinations and spans and the development of appropriate design rules for the prediction of the ultimate moment capacities of LSBs with web openings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is an innovative cold-formed steel hollow flange section. When used as floor joists, the LSB sections require holes in the web to provide access for various services. In this study a detailed investigation was undertaken into the elastic lateral distortional buckling behaviour of LSBs with circular web openings subjected to a uniform moment using finite element analysis. Validated ideal finite element models were used first to study the effect of web holes on their elastic lateral distortional buckling behaviour. An equivalent web thickness method was then proposed using four different equations for the elastic buckling analyses of LSBs with web holes. It was found that two of them could be successfully used with approximate numerical models based on solid web elements with an equivalent reduced thickness to predict the elastic lateral distortional buckling moments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the research carried out towards the development of a hybrid-composite floor plate systems (HCFPS) using polyurethane (PU), glass-fibre reinforced cement (GRC) and thin perforated steel laminate. HCFPS is configured in such a way where positive inherent properties of individual component materials are combined to offset any weakness and achieve the optimum performance. Finite Element modeling of HCFPS with ABAQUS 6.9-1, comparative studies of HCFPS with the steel deck composite system and experimental investigations which will be carried out are briefly described in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compound pelvic fractures are deemed to be one of the most severe orthopaedic injuries with an extremely high morbidity and mortality. After the initial resuscitation phase the prevention of pelvic sepsis is one of the main treatment goals for patients with an open pelvic fracture. If there is a suspicion of a rectal injury or if the wounds are in the perineal area, The Princess Alexandra Hospital's management plan includes early faecal diversion combined with vigorous soft tissue debridement, VAC(®) therapy and (if indicated) external fixation of the pelvic fracture. We present our flowchart for the treatment of trauma patients with compound pelvic fractures illustrated by a case report describing a 32 year old patient who sustained an open pelvic ring injury in a workplace accident. The aim of this paper is to underline the importance of a safe, straightforward approach to compound pelvic fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual sea-floor mapping is a rapidly growing application for Autonomous Underwater Vehicles (AUVs). AUVs are well-suited to the task as they remove humans from a potentially dangerous environment, can reach depths human divers cannot, and are capable of long-term operation in adverse conditions. The output of sea-floor maps generated by AUVs has a number of applications in scientific monitoring: from classifying coral in high biological value sites to surveying sea sponges to evaluate marine environment health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New materials technology has provided the potential for the development of an innovative Hybrid Composite Floor Plate System (HCFPS) with many desirable properties, such as light weight, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions. HCFPS is configured such that the positive inherent properties of individual component materials are combined to offset any weakness and achieve optimum performance. Research has been carried out using extensive Finite Element (FE) computer simulations supported by experimental testing. Both the strength and serviceability requirements have been established for this lightweight floor plate system. This paper presents some of the research towards the development of HCFPS along with a parametric study to select suitable span lengths.