147 resultados para parameter uncertainty
Resumo:
Sales growth and employment growth are the two most widely used growth indicators for new ventures; yet, sales growth and employment growth are not interchangeable measures of new venture growth. Rather, they are related, but somewhat independent constructs that respond differently to a variety of criteria. Most of the literature treats this as a methodological technicality. However, sales growth with or without accompanying employment growth has very different implications for managers and policy makers. A better understanding of what drives these different growth metrics has the potential to lead to better decision making. To improve that understanding we apply transaction cost economics reasoning to predict when sales growth will be or will not be accompanied by employment growth. Our results indicate that our predictions are borne out consistently in resource-constrained contexts but not in resource-munificent contexts.
Resumo:
Risks and uncertainties are inevitable in engineering projects and infrastructure investments. Decisions about investment in infrastructure such as for maintenance, rehabilitation and construction works can pose risks, and may generate significant impacts on social, cultural, environmental and other related issues. This report presents the results of a literature review of current practice in identifying, quantifying and managing risks and predicting impacts as part of the planning and assessment process for infrastructure investment proposals. In assessing proposals for investment in infrastructure, it is necessary to consider social, cultural and environmental risks and impacts to the overall community, as well as financial risks to the investor. The report defines and explains the concept of risk and uncertainty, and describes the three main methodology approaches to the analysis of risk and uncertainty in investment planning for infrastructure, viz examining a range of scenarios or options, sensitivity analysis, and a statistical probability approach, listed here in order of increasing merit and complexity. Forecasts of costs, benefits and community impacts of infrastructure are recognised as central aspects of developing and assessing investment proposals. Increasingly complex modelling techniques are being used for investment evaluation. The literature review identified forecasting errors as the major cause of risk. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. The report contains a summary of the broad nature of decision-making tools used by governments and other organisations in Australia, New Zealand, Europe and North America, and shows their overall approach to risk assessment in assessing public infrastructure proposals. While there are established techniques to quantify financial and economic risks, quantification is far less developed for political, social and environmental risks and impacts. For risks that cannot be readily quantified, assessment techniques commonly include classification or rating systems for likelihood and consequence. The report outlines the system used by the Australian Defence Organisation and in the Australian Standard on risk management. After each risk is identified and quantified or rated, consideration can be given to reducing the risk, and managing any remaining risk as part of the scope of the project. The literature review identified use of risk mapping techniques by a North American chemical company and by the Australian Defence Organisation. This literature review has enabled a risk assessment strategy to be developed, and will underpin an examination of the feasibility of developing a risk assessment capability using a probability approach.
Resumo:
A study has been conducted to investigate current practices on decision-making under risk and uncertainty for infrastructure project investments. It was found that many European countries such as the UK, France, Germany including Australia use scenarios for the investigation of the effects of risk and uncertainty of project investments. Different alternative scenarios are mostly considered during the engineering economic cost-benefit analysis stage. For instance, the World Bank requires an analysis of risks in all project appraisals. Risk in economic evaluation needs to be addressed by calculating sensitivity of the rate of return for a number of events. Risks and uncertainties of project developments arise from various sources of errors including data, model and forecasting errors. It was found that the most influential factors affecting risk and uncertainty resulted from forecasting errors. Data errors and model errors have trivial effects. It was argued by many analysts that scenarios do not forecast what will happen but scenarios indicate only what can happen from given alternatives. It was suggested that the probability distributions of end-products of the project appraisal, such as cost-benefit ratios that take forecasting errors into account, are feasible decision tools for economic evaluation. Political, social, environmental as well as economic and other related risk issues have been addressed and included in decision-making frameworks, such as in a multi-criteria decisionmaking framework. But no suggestion has been made on how to incorporate risk into the investment decision-making process.
Resumo:
Purpose: Choosing the appropriate procurement system for construction projects is a complex and challenging task for clients particularly when professional advice has not been sought. To assist with the decision making process, a range of procurement selection tools and techniques have been developed by both academic and industry bodies. Public sector clients in Western Australia (WA) remain uncertain about the pairing of procurement method to bespoke construction project and how this decision will ultimately impact upon project success. This paper examines ‘how and why’ a public sector agency selected particular procurement methods. · Methodology/Approach: An analysis of two focus group workshops (with 18 senior project and policy managers involved with procurement selection) is reported upon · Findings: The traditional lump sum (TLS) method is still the preferred procurement path even though alternative forms such as design and construct, public-private-partnerships could optimize the project outcome. Paradoxically, workshop participants agreed that alternative procurement forms should be considered, but an embedded culture of uncertainty avoidance invariably meant that TLS methods were selected. Senior managers felt that only a limited number of contractors have the resources and experience to deliver projects using the nontraditional methods considered. · Research limitations/implications: The research identifies a need to develop a framework that public sector clients can use to select an appropriate procurement method. A procurement framework should be able to guide the decision-maker rather than provide a prescriptive solution. Learning from previous experiences with regard to procurement selection will further provide public sector clients with knowledge about how to best deliver their projects.
Resumo:
Harmful Algal Blooms (HABs) are a worldwide problem that have been increasing in frequency and extent over the past several decades. HABs severely damage aquatic ecosystems by destroying benthic habitat, reducing invertebrate and fish populations and affecting larger species such as dugong that rely on seagrasses for food. Few statistical models for predicting HAB occurrences have been developed, and in common with most predictive models in ecology, those that have been developed do not fully account for uncertainties in parameters and model structure. This makes management decisions based on these predictions more risky than might be supposed. We used a probit time series model and Bayesian Model Averaging (BMA) to predict occurrences of blooms of Lyngbya majuscula, a toxic cyanophyte, in Deception Bay, Queensland, Australia. We found a suite of useful predictors for HAB occurrence, with Temperature figuring prominently in models with the majority of posterior support, and a model consisting of the single covariate average monthly minimum temperature showed by far the greatest posterior support. A comparison of alternative model averaging strategies was made with one strategy using the full posterior distribution and a simpler approach that utilised the majority of the posterior distribution for predictions but with vastly fewer models. Both BMA approaches showed excellent predictive performance with little difference in their predictive capacity. Applications of BMA are still rare in ecology, particularly in management settings. This study demonstrates the power of BMA as an important management tool that is capable of high predictive performance while fully accounting for both parameter and model uncertainty.
Resumo:
Information uncertainty which is inherent in many real world applications brings more complexity to the visualisation problem. Despite the increasing number of research papers found in the literature, much more work is needed. The aims of this chapter are threefold: (1) to provide a comprehensive analysis of the requirements of visualisation of information uncertainty and their dimensions of complexity; (2) to review and assess current progress; and (3) to discuss remaining research challenges. We focus on four areas: information uncertainty modelling, visualisation techniques, management of information uncertainty modelling, propagation and visualisation, and the uptake of uncertainty visualisation in application domains.