20 resultados para noncovariant gauges
Resumo:
Advanced composite materials offer remarkable potential in the upgrade of civil engineering structures. The evolution of CFRP (carbon fibre reinforced polymer) technologies and their versatility for applications in civil constructions require comprehensive and reliable codes of practice. Guidelines are available on the rehabilitation and retrofit of concrete structures with advanced composite materials. However, there is a need to develop appropriate design guidelines for CFRP strengthened steel structures. It is important to understand the bond characteristics between CFRP and steel plates. This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length is similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough.
Resumo:
It is increasingly apparent that sea-level data (e.g. microfossil transfer functions, dated coral microatolls and direct observations from satellite and tidal gauges) vary temporally and spatially at regional to local scales, thus limiting our ability to model future sea-level rise for many regions. Understanding sealevel response at ‘far-field’ locations at regional scales is fundamental for formulating more relevant sea-level rise susceptibility models within these regions under future global change projections. Fossil corals and reefs in particular are valuable tools for reconstructing past sea levels and possible environmental phase shifts beyond the temporal constraints of instrumental records. This study used abundant surface geochronological data based on in situ subfossil corals and precise elevation surveys to determine previous sea level in Moreton Bay, eastern Australia, a far-field site. A total of 64 U-Th dates show that relative sea level was at least 1.1 m above modern lowest astronomical tide (LAT) from at least ˜6600 cal. yr BP. Furthermore, a rapid synchronous demise in coral reef growth occurred in Moreton Bay ˜5800 cal. yr BP, coinciding with reported reef hiatus periods in other areas around the Indo-Pacific region. Evaluating past reef growth patterns and phases allows for a better interpretation of anthropogenic forcing versus natural environmental/climatic cycles that effect reef formation and demise at all scales and may allow better prediction of reef response to future global change.
Resumo:
A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.
Resumo:
Strain-based failure criteria have several advantages over stress-based failure criteria: they can account for elastic and inelastic strains, they utilise direct, observables effects instead of inferred effects (strain gauges vs. stress estimates), and model complete stress-strain curves including pre-peak, non-linear elasticity and post-peak strain weakening. In this study, a strain-based failure criterion derived from thermodynamic first principles utilising the concepts of continuum damage mechanics is presented. Furthermore, implementation of this failure criterion into a finite-element simulation is demonstrated and applied to the stability of underground mining coal pillars. In numerical studies, pillar strength is usually expressed in terms of critical stresses or stress-based failure criteria where scaling with pillar width and height is common. Previous publications have employed the finite-element method for pillar stability analysis using stress-based failure criterion such as Mohr-Coulomb and Hoek-Brown or stress-based scalar damage models. A novel constitutive material model, which takes into consideration anisotropy as well as elastic strain and damage as state variables has been developed and is presented in this paper. The damage threshold and its evolution are strain-controlled, and coupling of the state variables is achieved through the damage-induced degradation of the elasticity tensor. This material model is implemented into the finite-element software ABAQUS and can be applied to 3D problems. Initial results show that this new material model is capable of describing the non-linear behaviour of geomaterials commonly observed before peak strength is reached as well as post-peak strain softening. Furthermore, it is demonstrated that the model can account for directional dependency of failure behaviour (i.e. anisotropy) and has the potential to be expanded to environmental controls like temperature or moisture.
Resumo:
The safety and performance of bridges could be monitored and evaluated by Structural Health Monitoring (SHM) systems. These systems try to identify and locate the damages in a structure and estimate their severities. Current SHM systems are applied to a single bridge, and they have not been used to monitor the structural condition of a network of bridges. This paper propose a new method which will be used in Synthetic Rating Procedures (SRP) developed by the authors of this paper and utilizes SHM systems for monitoring and evaluating the condition of a network of bridges. Synthetic rating procedures are used to assess the condition of a network of bridges and identify their ratings. As an additional part of the SRP, the method proposed in this paper can continuously monitor the behaviour of a network of bridges and therefore it can assist to prevent the sudden collapses of bridges or the disruptions to their serviceability. The method could be an important part of a bridge management system (BMS) for managers and engineers who work on condition assessment of a network of bridges.