126 resultados para nitride layer
Resumo:
In this chapter we propose clipping with amplitude and phase corrections to reduce the peak-to-average power ratio (PAR) of orthogonal frequency division multiplexed (OFDM) signals in high-speed wireless local area networks defined in IEEE 802.11a physical layer. The proposed techniques can be implemented with a small modification at the transmitter and the receiver remains standard compliant. PAR reduction as much as 4dB can be achieved by selecting a suitable clipping ratio and a correction factor depending on the constellation used. Out of band noise (OBN) is also reduced.
Study of industrially relevant boundary layer and axisymmetric flows, including swirl and turbulence
Resumo:
Micropolar and RNG-based modelling of industrially relevant boundary layer and recirculating swirling flows is described. Both models contain a number of adjustable parameters and auxiliary conditions that must be either modelled or experimentally determined, and the effects of varying these on the resulting flow solutions is quantified. To these ends, the behaviour of the micropolar model for self-similar flow over a surface that is both stretching and transpiring is explored in depth. The simplified governing equations permit both analytic and numerical approaches to be adopted, and a number of closed form solutions (both exact and approximate) are obtained using perturbation and order of magnitude analyses. Results are compared with the corresponding Newtonian flow solution in order to highlight the differences between the micropolar and classical models, and significant new insights into the behaviour of the micropolar model are revealed for this flow. The behaviour of the RNG-bas based models for swirling flow with vortex breakdown zones is explored in depth via computational modelling of two experimental data sets and an idealised breakdown flow configuration. Meticulous modeling of upstream auxillary conditions is required to correctly assess the behavior of the models studied in this work. The novel concept of using the results to infer the role of turbulence in the onset and topology of the breakdown zone is employed.
Resumo:
Reduced element spacing in antenna arrays gives rise to strong mutual coupling between array elements and may cause significant performance degradation. These effects can be alleviated by introducing a decoupling network consisting of interconnected reactive elements. The existing design approach for the synthesis of a decoupling network for circulant symmetric arrays allows calculation of element values using closed-form expressions, but the resulting circuit configuration requires multilayer technology for implementation. In this paper, a new structure for the decoupling of circulant symmetric arrays of more than four elements is presented. Element values are no longer obtained in closed form, but the resulting circuit is much simpler and can be implemented on a single layer.
Resumo:
The natural convection thermal boundary layer adjacent to an inclined flat plate subject to sudden heating and a temperature boundary condition which follows a ramp function up until a specified time and then remains constant is investigated. The development of the flow from start-up to a steady-state has been described based on scaling analyses and verified by numerical simulations. Different flow regimes based on the Rayleigh number are discussed with numerical results for both boundary conditions. For ramp heating, the boundary layer flow depends on the comparison of the time at which the ramp heating is completed and the time at which the boundary layer completes its growth. If the ramp time is long compared with the steady state time, the layer reaches a quasi steady mode in which the growth of the layer is governed solely by the thermal balance between convection and conduction. On the other hand, if the ramp is completed before the layer becomes steady; the subsequent growth is governed by the balance between buoyancy and inertia, as for the case of instantaneous heating.
Resumo:
An investigation of the natural convection boundary layer adjacent to an inclined semi-infinite plate subject to a temperature boundary condition which follows a ramp function up until some specified time and then remains constant is reported. The development of the flow from start-up to a steadystate has been described based on scaling analyses and verified by numerical simulations. Attention in this study has been given to fluids having a Prandtl number Pr less than unity. The boundary layer flow depends on the comparison of the time at which the ramp heating is completed and the time at which the boundary layer completes its growth. If the ramp time is long compared with the steady state time, the layer reaches a quasi steady mode in which the growth of the layer is governed solely by the thermal balance between convection and conduction. On the other hand, if the ramp is completed before the layer becomes steady; the subsequent growth is governed by the balance between buoyancy and inertia, as for the case of instantaneous heating.
Resumo:
The natural convection thermal boundary layer adjacent to an abruptly heated inclined flat plate is investigated through a scaling analysis and verified by numerical simulations. In general, the development of the thermal flow can be characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady state stage. Major scales including the flow velocity, flow development time, and the thermal and viscous boundary layer thicknesses are established to quantify the flow development at different stages and over a wide range of flow parameters. Details of the scaling analysis and the numerical procedures are described in this paper.
Resumo:
A scaling analysis for the natural convection boundary layer adjacent to an inclined semi-infinite plate subject to a non-instantaneous heating in the form of an imposed wall temperature which increases linearly up to a prescribed steady value over a prescribed time is reported. The development of the flow from start-up to a steady-state has been described based on scaling analyses and verified by numerical simulations. The analysis reveals that, if the period of temperature growth on the wall is sufficiently long, the boundary layer reaches a quasisteady mode before the growth of the temperature is completed. In this mode the thermal boundary layer at first grows in thickness and then contracts with increasing time. However, if the imposed wall temperature growth period is sufficiently short, the boundary layer develops differently, but after the wall temperature growth is completed, the boundary layer develops as though the start up had been instantaneous. The steady state values of the boundary layer for both cases are ultimately the same.
Resumo:
Natural convection thermal boundary layer adjacent to an instantaneous heated inclined flat plate is investigated through a scaling analysis and verified by direct numerical simulations. It is revealed from the analysis that the development of the boundary layer may be characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady state stage. These three stages can be clearly identified from the numerical simulations. Major scales including the flow velocity, flow development time, and the thermal and viscous boundary layer thicknesses are established to quantify the flow development at different stages and over a wide range of flow parameters. Details of the scaling analysis are described in this paper.
Resumo:
The unsteady natural convection boundary layer adjacent to an instantaneously heated inclined plate is investigated using an improved scaling analysis and direct numerical simulations. The development of the unsteady natural convection boundary layer following instantaneous heating may be classified into three distinct stages including a start-up stage, a transitional stage and a steady state stage, which can be clearly identified in the analytical and numerical results. Major scaling relations of the velocity and thicknesses and the flow development time of the natural convection boundary layer are obtained using triple-layer integral solutions and verified by direct numerical simulations over a wide range of flow parameters.