581 resultados para multiple object tracking


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In public venues, crowd size is a key indicator of crowd safety and stability. In this paper we propose a crowd counting algorithm that uses tracking and local features to count the number of people in each group as represented by a foreground blob segment, so that the total crowd estimate is the sum of the group sizes. Tracking is employed to improve the robustness of the estimate, by analysing the history of each group, including splitting and merging events. A simplified ground truth annotation strategy results in an approach with minimal setup requirements that is highly accurate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mean shift tracker has achieved great success in visual object tracking due to its efficiency being nonparametric. However, it is still difficult for the tracker to handle scale changes of the object. In this paper, we associate a scale adaptive approach with the mean shift tracker. Firstly, the target in the current frame is located by the mean shift tracker. Then, a feature point matching procedure is employed to get the matched pairs of the feature point between target regions in the current frame and the previous frame. We employ FAST-9 corner detector and HOG descriptor for the feature matching. Finally, with the acquired matched pairs of the feature point, the affine transformation between target regions in the two frames is solved to obtain the current scale of the target. Experimental results show that the proposed tracker gives satisfying results when the scale of the target changes, with a good performance of efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soft biometrics are characteristics that can be used to describe, but not uniquely identify an individual. These include traits such as height, weight, gender, hair, skin and clothing colour. Unlike traditional biometrics (i.e. face, voice) which require cooperation from the subject, soft biometrics can be acquired by surveillance cameras at range without any user cooperation. Whilst these traits cannot provide robust authentication, they can be used to provide coarse authentication or identification at long range, locate a subject who has been previously seen or who matches a description, as well as aid in object tracking. In this paper we propose three part (head, torso, legs) height and colour soft biometric models, and demonstrate their verification performance on a subset of the PETS 2006 database. We show that these models, whilst not as accurate as traditional biometrics, can still achieve acceptable rates of accuracy in situations where traditional biometrics cannot be applied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Segmentation of novel or dynamic objects in a scene, often referred to as background sub- traction or foreground segmentation, is critical for robust high level computer vision applica- tions such as object tracking, object classifca- tion and recognition. However, automatic real- time segmentation for robotics still poses chal- lenges including global illumination changes, shadows, inter-re ections, colour similarity of foreground to background, and cluttered back- grounds. This paper introduces depth cues provided by structure from motion (SFM) for interactive segmentation to alleviate some of these challenges. In this paper, two prevailing interactive segmentation algorithms are com- pared; Lazysnapping [Li et al., 2004] and Grab- cut [Rother et al., 2004], both based on graph- cut optimisation [Boykov and Jolly, 2001]. The algorithms are extended to include depth cues rather than colour only as in the original pa- pers. Results show interactive segmentation based on colour and depth cues enhances the performance of segmentation with a lower er- ror with respect to ground truth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a preliminary crash avoidance framework for heavy equipment control systems. Safe equipment operation is a major concern on construction sites since fatal on-site injuries are an industry-wide problem. The proposed framework has potential for effecting active safety for equipment operation. The framework contains algorithms for spatial modeling, object tracking, and path planning. Beyond generating spatial models in fractions of seconds, these algorithms can successfully track objects in an environment and produce a collision-free 3D motion trajectory for equipment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modelling events in densely crowded environments remains challenging, due to the diversity of events and the noise in the scene. We propose a novel approach for anomalous event detection in crowded scenes using dynamic textures described by the Local Binary Patterns from Three Orthogonal Planes (LBP-TOP) descriptor. The scene is divided into spatio-temporal patches where LBP-TOP based dynamic textures are extracted. We apply hierarchical Bayesian models to detect the patches containing unusual events. Our method is an unsupervised approach, and it does not rely on object tracking or background subtraction. We show that our approach outperforms existing state of the art algorithms for anomalous event detection in UCSD dataset.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The time consuming and labour intensive task of identifying individuals in surveillance video is often challenged by poor resolution and the sheer volume of stored video. Faces or identifying marks such as tattoos are often too coarse for direct matching by machine or human vision. Object tracking and super-resolution can then be combined to facilitate the automated detection and enhancement of areas of interest. The object tracking process enables the automatic detection of people of interest, greatly reducing the amount of data for super-resolution. Smaller regions such as faces can also be tracked. A number of instances of such regions can then be utilized to obtain a super-resolved version for matching. Performance improvement from super-resolution is demonstrated using a face verification task. It is shown that there is a consistent improvement of approximately 7% in verification accuracy, using both Eigenface and Elastic Bunch Graph Matching approaches for automatic face verification, starting from faces with an eye to eye distance of 14 pixels. Visual improvement in image fidelity from super-resolved images over low-resolution and interpolated images is demonstrated on a small database. Current research and future directions in this area are also summarized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a commercial environment, it is advantageous to know how long it takes customers to move between different regions, how long they spend in each region, and where they are likely to go as they move from one location to another. Presently, these measures can only be determined manually, or through the use of hardware tags (i.e. RFID). Soft biometrics are characteristics that can be used to describe, but not uniquely identify an individual. They include traits such as height, weight, gender, hair, skin and clothing colour. Unlike traditional biometrics, soft biometrics can be acquired by surveillance cameras at range without any user cooperation. While these traits cannot provide robust authentication, they can be used to provide identification at long range, and aid in object tracking and detection in disjoint camera networks. In this chapter we propose using colour, height and luggage soft biometrics to determine operational statistics relating to how people move through a space. A novel average soft biometric is used to locate people who look distinct, and these people are then detected at various locations within a disjoint camera network to gradually obtain operational statistics

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenes using a “bag of particle trajectories”. Particle trajectories are extracted from foreground regions within short video clips using particle video, which estimates long range motion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to detect unusual events in surviellance footage as they happen is a highly desireable feature for a surveillance system. However, this problem remains challenging in crowded scenes due to occlusions and the clustering of people. In this paper, we propose using the Distributed Behavior Model (DBM), which has been widely used in computer graphics, for video event detection. Our approach does not rely on object tracking, and is robust to camera movements. We use sparse coding for classification, and test our approach on various datasets. Our proposed approach outperforms a state-of-the-art work which uses the social force model and Latent Dirichlet Allocation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose an approach which attempts to solve the problem of surveillance event detection, assuming that we know the definition of the events. To facilitate the discussion, we first define two concepts. The event of interest refers to the event that the user requests the system to detect; and the background activities are any other events in the video corpus. This is an unsolved problem due to many factors as listed below: 1) Occlusions and clustering: The surveillance scenes which are of significant interest at locations such as airports, railway stations, shopping centers are often crowded, where occlusions and clustering of people are frequently encountered. This significantly affects the feature extraction step, and for instance, trajectories generated by object tracking algorithms are usually not robust under such a situation. 2) The requirement for real time detection: The system should process the video fast enough in both of the feature extraction and the detection step to facilitate real time operation. 3) Massive size of the training data set: Suppose there is an event that lasts for 1 minute in a video with a frame rate of 25fps, the number of frames for this events is 60X25 = 1500. If we want to have a training data set with many positive instances of the event, the video is likely to be very large in size (i.e. hundreds of thousands of frames or more). How to handle such a large data set is a problem frequently encountered in this application. 4) Difficulty in separating the event of interest from background activities: The events of interest often co-exist with a set of background activities. Temporal groundtruth typically very ambiguous, as it does not distinguish the event of interest from a wide range of co-existing background activities. However, it is not practical to annotate the locations of the events in large amounts of video data. This problem becomes more serious in the detection of multi-agent interactions, since the location of these events can often not be constrained to within a bounding box. 5) Challenges in determining the temporal boundaries of the events: An event can occur at any arbitrary time with an arbitrary duration. The temporal segmentation of events is difficult and ambiguous, and also affected by other factors such as occlusions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disjoint top-view networked cameras are among the most commonly utilized networks in many applications. One of the open questions for these cameras' study is the computation of extrinsic parameters (positions and orientations), named extrinsic calibration or localization of cameras. Current approaches either rely on strict assumptions of the object motion for accurate results or fail to provide results of high accuracy without the requirement of the object motion. To address these shortcomings, we present a location-constrained maximum a posteriori (LMAP) approach by applying known locations in the surveillance area, some of which would be passed by the object opportunistically. The LMAP approach formulates the problem as a joint inference of the extrinsic parameters and object trajectory based on the cameras' observations and the known locations. In addition, a new task-oriented evaluation metric, named MABR (the Maximum value of All image points' Back-projected localization errors' L2 norms Relative to the area of field of view), is presented to assess the quality of the calibration results in an indoor object tracking context. Finally, results herein demonstrate the superior performance of the proposed method over the state-of-the-art algorithm based on the presented MABR and classical evaluation metric in simulations and real experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is not uncommon to hear a person of interest described by their height, build, and clothing (i.e. type and colour). These semantic descriptions are commonly used by people to describe others, as they are quick to relate and easy to understand. However such queries are not easily utilised within intelligent surveillance systems as they are difficult to transform into a representation that can be searched for automatically in large camera networks. In this paper we propose a novel approach that transforms such a semantic query into an avatar that is searchable within a video stream, and demonstrate state-of-the-art performance for locating a subject in video based on a description.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is not uncommon to hear a person of interest described by their height, build, and clothing (i.e. type and colour). These semantic descriptions are commonly used by people to describe others, as they are quick to communicate and easy to understand. However such queries are not easily utilised within intelligent video surveillance systems, as they are difficult to transform into a representation that can be utilised by computer vision algorithms. In this paper we propose a novel approach that transforms such a semantic query into an avatar in the form of a channel representation that is searchable within a video stream. We show how spatial, colour and prior information (person shape) can be incorporated into the channel representation to locate a target using a particle-filter like approach. We demonstrate state-of-the-art performance for locating a subject in video based on a description, achieving a relative performance improvement of 46.7% over the baseline. We also apply this approach to person re-detection, and show that the approach can be used to re-detect a person in a video steam without the use of person detection.