20 resultados para mortar


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear interface element modelling method is formulated for the prediction of deformation and failure of high adhesive thin layer polymer mortared masonry exhibiting failure of units and mortar. Plastic flow vectors are explicitly integrated within the implicit finite element framework instead of relying on predictor–corrector like approaches. The method is calibrated using experimental data from uniaxial compression, shear triplet and flexural beam tests. The model is validated using a thin layer mortared masonry shear wall, whose experimental datasets are reported in the literature and is used to examine the behaviour of thin layer mortared masonry under biaxial loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Masonry bond is affected by many parameters such as the type of mortar used, the techniques of dispersion of mortar and the surface texture of the concrete blocks. Additionally it is understood from the studies on conventional masonry that the bond characteristics are also influenced by the curing methods as well as the age of the bond at the time of testing. These effects on thin layer mortared masonry employing polymer cement mortars are not well understood. Therefore, the effect of curing methods and age to the bond strength and deformation of masonry containing thin layered polymer cement mortar was investigated as part of an ongoing research program at the Queensland University of Technology. This paper presents an experimental investigation of the flexural and shear bond characteristics of the thin layer mortared concrete masonry. The parameters examined include the effects curing and ageing to the bond development over a period from 14 days to 56 days after fabrication. The results exhibit that dry cured thin layer mortared masonry exhibits higher bond strength and Young’s and shear moduli compared to the wet cured specimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with a finite element modelling method for thin layer mortared masonry systems. In this method, the mortar layers including the interfaces are represented using a zero thickness interface element and the masonry units are modelled using an elasto-plastic, damaging solid element. The interface element is formulated using two regimes; i) shear-tension and ii) shearcompression. In the shear-tension regime, the failure of joint is consiedered through an eliptical failure criteria and in shear-compression it is considered through Mohr Coulomb type failure criterion. An explicit integration scheme is used in an implicit finite element framework for the formulation of the interface element. The model is calibrated with an experimental dataset from thin layer mortared masonry prism subjected to uniaxial compression, a triplet subjected to shear loads a beam subjected to flexural loads and used to predict the response of thin layer mortared masonry wallettes under orthotropic loading. The model is found to simulate the behaviour of a thin layer mortated masonry shear wall tested under pre-compression and inplane shear quite adequately. The model is shown to reproduce the failure of masonry panels under uniform biaxial state of stresses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Similar to most other creative industries, the evolution of the music industry is heavily shaped by media technologies. This was equally true in 1999, when the global recorded music industry had experienced two decades of continuous growth largely driven by the rapid transition from vinyl records to Compact Discs. The transition encouraged avid music listeners to purchase much of their music collections all over again in order to listen to their favourite music with ‘digital sound’. As a consequence of this successful product innovation, recorded music sales (unit measure) more than doubled between the early 1980s and the end of the 1990s. It was with this backdrop that the first peer-to-peer file sharing service was developed and released to the mainstream music market in 1999 by the college student Shawn Fanning. The service was named Napster and it marks the beginning of an era that is now a classic example of how an innovation is able to disrupt an entire industry and make large swathes of existing industry competences obsolete. File sharing services such as Napster, followed by a range of similar services in its path, reduced physical unit sales in the music industry to levels that had not been seen since the 1970s. The severe impact of the internet on physical sales shocked many music industry executives who spent much of the 2000s vigorously trying to reverse the decline and make the disruptive technologies go away. At the end, they learned that their efforts were to no avail and the impact on the music industry proved to be transformative, irreversible and, to many music industry professionals, also devastating. Thousands of people lost their livelihood, large and small music companies have folded or been forced into mergers or acquisitions. But as always during periods of disruption, the past 15 years have also been very innovative, spurring a plethora of new music business models. These new business models have mainly emerged outside the music industry and the innovators have been often been required to be both persuasive and persistent in order to get acceptance from the risk-averse and cash-poor music industry establishment. Apple was one such change agent that in 2003 was the first company to open up a functioning and legal market for online music. iTunes Music Store was the first online retail outlet that was able to offer the music catalogues from all the major music companies; it used an entirely novel pricing model, and it allowed consumers to de-bundle the music album and only buy the songs that they actually liked. Songs had previously been bundled by physical necessity as discs or cassettes, but with iTunes Music Store, the institutionalized album bundle slowly started to fall apart. The consequences had an immediate impact on music retailing and within just a few years, many brick and mortar record stores were forced out of business in markets across the world. The transformation also had disruptive consequences beyond music retailing and redefined music companies’ organizational structures, work processes and routines, as well as professional roles. iTunes Music Store in one sense was a disruptive innovation, but it was at the same time relatively incremental, since the major labels’ positions and power structures remained largely unscathed. The rights holders still controlled their intellectual properties and the structures that guided the royalties paid per song that was sold were predictable, transparent and in line with established music industry practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Masonry under compression is affected by the properties of its constituents and their interfaces. In spite of extensive investigations of the behaviour of masonry under compression, the information in the literature cannot be regarded as comprehensive due to ongoing inventions of new generation products – for example, polymer modified thin layer mortared masonry and drystack masonry. As comprehensive experimental studies are very expensive, an analytical model inspired by damage mechanics is developed and applied to the prediction of the compressive behaviour of masonry in this paper. The model incorporates a parabolic progressively softening stress-strain curve for the units and a progressively stiffening stress-strain curve until a threshold strain for the combined mortar and the unit-mortar interfaces is reached. The model simulates the mutual constraints imposed by each of these constituents through their respective tensile and compressive behaviour and volumetric changes. The advantage of the model is that it requires only the properties of the constituents and considers masonry as a continuum and computes the average properties of the composite masonry prisms/wallettes; it does not require discretisation of prism or wallette similar to the finite element methods. The capability of the model in capturing the phenomenological behaviour of masonry with appropriate elastic response, stiffness degradation and post peak softening is presented through numerical examples. The fitting of the experimental data to the model parameters is demonstrated through calibration of some selected test data on units and mortar from the literature; the calibrated model is shown to predict the responses of the experimentally determined masonry built using the corresponding units and mortar quite well. Through a series of sensitivity studies, the model is also shown to predict the masonry strength appropriately for changes to the properties of the units and mortar, the mortar joint thickness and the ratio of the height of unit to mortar joint thickness. The unit strength is shown to affect the masonry strength significantly. Although the mortar strength has only a marginal effect, reduction in mortar joint thickness is shown to have a profound effect on the masonry strength. The results obtained from the model are compared with the various provisions in the Australian Masonry Structures Standard AS3700 (2011) and Eurocode 6.