150 resultados para morphological population balance model
Resumo:
Background. To establish whether sensorimotor function and balance are associated with on-road driving performance in older adults. Methods. The performance of 270 community-living adults aged 70–88 years recruited via the electoral roll was measured on a battery of peripheral sensation, strength, flexibility, reaction time, and balance tests and on a standardized measure of on-road driving performance. Results. Forty-seven participants (17.4%) were classified as unsafe based on their driving assessment. Unsafe driving was associated with reduced peripheral sensation, lower limb weakness, reduced neck range of motion, slow reaction time, and poor balance in univariate analyses. Multivariate logistic regression analysis identified poor vibration sensitivity, reduced quadriceps strength, and increased sway on a foam surface with eyes closed as significant and independent risk factors for unsafe driving. These variables classified participants into safe and unsafe drivers with a sensitivity of 74% and specificity of 70%. Conclusions. A number of sensorimotor and balance measures were associated with driver safety and the multivariate model comprising measures of sensation, strength, and balance was highly predictive of unsafe driving in this sample. These findings highlight important determinants of driver safety and may assist in developing efficacious driver safety strategies for older drivers.
Resumo:
Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.
Resumo:
Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.
Resumo:
Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency. ©2006 Society for Conservation Biology.
Resumo:
Objectives To inform demand management strategies aimed at reducing congestion in EDs by: (i) identifying public use of EDs, decision-making and reasons; and (ii) measuring acceptance of alternative care models. Methods A cross-sectional telephone survey of a random sample of Queensland population aged 18 years or older residing in a dwelling unit in Queensland that could be contacted on a land-based telephone service was conducted. One person per household was selected according to a predetermined algorithm to ensure sex and regional balance were interviewed. The main outcome measures were: ED use, attitudes towards ED staff and services, and alternative models of care. Results The final sample included a total of 1256 respondents (response rate = 40.3%). Twenty-one per cent attended EDs in the preceding 12 months. The decision to attend was made by patients (51%), health and medical professionals (31%), and others (18%). The main reasons included perceived severity of the illness (47%), unavailability of alternative services (26%) and better care (11%). Most respondents agreed with more flexible care models of service delivery including incentives for general practitioners (90%), private health insurance coverage for ED use (89%), and enhanced roles for paramedics and nurses. Conclusions Main reason for attending ED is perceived severity of illness, followed by lack of alternative care. The majority of both consumers and the public are in favour of more flexible care models. However, further research is necessary to detail those alternatives and to test and validate their effectiveness.
Resumo:
BACKGROUND CONTEXT: The Neck Disability Index frequently is used to measure outcomes of the neck. The statistical rigor of the Neck Disability Index has been assessed with conflicting outcomes. To date, Confirmatory Factor Analysis of the Neck Disability Index has not been reported for a suitably large population study. Because the Neck Disability Index is not a condition-specific measure of neck function, initial Confirmatory Factor Analysis should consider problematic neck patients as a homogenous group. PURPOSE: We sought to analyze the factor structure of the Neck Disability Index through Confirmatory Factor Analysis in a symptomatic, homogeneous, neck population, with respect to pooled populations and gender subgroups. STUDY DESIGN: This was a secondary analysis of pooled data. PATIENT SAMPLE: A total of 1,278 symptomatic neck patients (67.5% female, median age 41 years), 803 nonspecific and 475 with whiplash-associated disorder. OUTCOME MEASURES: The Neck Disability Index was used to measure outcomes. METHODS: We analyzed pooled baseline data from six independent studies of patients with neck problems who completed Neck Disability Index questionnaires at baseline. The Confirmatory Factor Analysis was considered in three scenarios: the full sample and separate sexes. Models were compared empirically for best fit. RESULTS: Two-factor models have good psychometric properties across both the pooled and sex subgroups. However, according to these analyses, the one-factor solution is preferable from both a statistical perspective and parsimony. The two-factor model was close to significant for the male subgroup (p<.07) where questions separated into constructs of mental function (pain, reading headaches and concentration) and physical function (personal care, lifting, work, driving, sleep, and recreation). CONCLUSIONS: The Neck Disability Index demonstrated a one-factor structure when analyzed by Confirmatory Factor Analysis in a pooled, homogenous sample of neck problem patients. However, a two-factor model did approach significance for male subjects where questions separated into constructs of mental and physical function. Further investigations in different conditions, subgroup and sex-specific populations are warranted.
Resumo:
BACKGROUND Many koala populations around Australia are in serious decline, with a substantial component of this decline in some Southeast Queensland populations attributed to the impact of Chlamydia. A Chlamydia vaccine for koalas is in development and has shown promise in early trials. This study contributes to implementation preparedness by simulating vaccination strategies designed to reverse population decline and by identifying which age and sex category it would be most effective to target. METHODS We used field data to inform the development and parameterisation of an individual-based stochastic simulation model of a koala population endemic with Chlamydia. The model took into account transmission, morbidity and mortality caused by Chlamydia infections. We calibrated the model to characteristics of typical Southeast Queensland koala populations. As there is uncertainty about the effectiveness of the vaccine in real-world settings, a variety of potential vaccine efficacies, half-lives and dosing schedules were simulated. RESULTS Assuming other threats remain constant, it is expected that current population declines could be reversed in around 5-6 years if female koalas aged 1-2 years are targeted, average vaccine protective efficacy is 75%, and vaccine coverage is around 10% per year. At lower vaccine efficacies the immunological effects of boosting become important: at 45% vaccine efficacy population decline is predicted to reverse in 6 years under optimistic boosting assumptions but in 9 years under pessimistic boosting assumptions. Terminating a successful vaccination programme at 5 years would lead to a rise in Chlamydia prevalence towards pre-vaccination levels. CONCLUSION For a range of vaccine efficacy levels it is projected that population decline due to endemic Chlamydia can be reversed under realistic dosing schedules, potentially in just 5 years. However, a vaccination programme might need to continue indefinitely in order to maintain Chlamydia prevalence at a sufficiently low level for population growth to continue.
Resumo:
An important uncertainty when estimating per capita consumption of, for example, illicit drugs by means of wastewater analysis (sometimes referred to as “sewage epidemiology”) relates to the size and variability of the de facto population in the catchment of interest. In the absence of a day-specific direct population count any indirect surrogate model to estimate population size lacks a standard to assess associated uncertainties. Therefore, the objective of this study was to collect wastewater samples at a unique opportunity, that is, on a census day, as a basis for a model to estimate the number of people contributing to a given wastewater sample. Mass loads for a wide range of pharmaceuticals and personal care products were quantified in influents of ten sewage treatment plants (STP) serving populations ranging from approximately 3500 to 500 000 people. Separate linear models for population size were estimated with the mass loads of the different chemical as the explanatory variable: 14 chemicals showed good, linear relationships, with highest correlations for acesulfame and gabapentin. De facto population was then estimated through Bayesian inference, by updating the population size provided by STP staff (prior knowledge) with measured chemical mass loads. Cross validation showed that large populations can be estimated fairly accurately with a few chemical mass loads quantified from 24-h composite samples. In contrast, the prior knowledge for small population sizes cannot be improved substantially despite the information of multiple chemical mass loads. In the future, observations other than chemical mass loads may improve this deficit, since Bayesian inference allows including any kind of information relating to population size.
Resumo:
We propose a new model for estimating the size of a population from successive catches taken during a removal experiment. The data from these experiments often have excessive variation, known as overdispersion, as compared with that predicted by the multinomial model. The new model allows catchability to vary randomly among samplings, which accounts for overdispersion. When the catchability is assumed to have a beta distribution, the likelihood function, which is refered to as beta-multinomial, is derived, and hence the maximum likelihood estimates can be evaluated. Simulations show that in the presence of extravariation in the data, the confidence intervals have been substantially underestimated in previous models (Leslie-DeLury, Moran) and that the new model provides more reliable confidence intervals. The performance of these methods was also demonstrated using two real data sets: one with overdispersion, from smallmouth bass (Micropterus dolomieu), and the other without overdispersion, from rat (Rattus rattus).
Resumo:
We use Bayesian model selection techniques to test extensions of the standard flat LambdaCDM paradigm. Dark-energy and curvature scenarios, and primordial perturbation models are considered. To that end, we calculate the Bayesian evidence in favour of each model using Population Monte Carlo (PMC), a new adaptive sampling technique which was recently applied in a cosmological context. The Bayesian evidence is immediately available from the PMC sample used for parameter estimation without further computational effort, and it comes with an associated error evaluation. Besides, it provides an unbiased estimator of the evidence after any fixed number of iterations and it is naturally parallelizable, in contrast with MCMC and nested sampling methods. By comparison with analytical predictions for simulated data, we show that our results obtained with PMC are reliable and robust. The variability in the evidence evaluation and the stability for various cases are estimated both from simulations and from data. For the cases we consider, the log-evidence is calculated with a precision of better than 0.08. Using a combined set of recent CMB, SNIa and BAO data, we find inconclusive evidence between flat LambdaCDM and simple dark-energy models. A curved Universe is moderately to strongly disfavoured with respect to a flat cosmology. Using physically well-motivated priors within the slow-roll approximation of inflation, we find a weak preference for a running spectral index. A Harrison-Zel'dovich spectrum is weakly disfavoured. With the current data, tensor modes are not detected; the large prior volume on the tensor-to-scalar ratio r results in moderate evidence in favour of r=0.
Resumo:
This program of research examines the experience of chronic pain in a community sample. While, it is clear that like patient samples, chronic pain in non-patient samples is also associated with psychological distress and physical disability, the experience of pain across the total spectrum of pain conditions (including acute and episodic pain conditions) and during the early course of chronic pain is less clear. Information about these aspects of the pain experience is important because effective early intervention for chronic pain relies on identification of people who are likely to progress to chronicity post-injury. A conceptual model of the transition from acute to chronic pain was proposed by Gatchel (1991a). In brief, Gatchel’s model describes three stages that individuals who have a serious pain experience move through, each with worsening psychological dysfunction and physical disability. The aims of this program of research were to describe the experience of pain in a community sample in order to obtain pain-specific data on the problem of pain in Queensland, and to explore the usefulness of Gatchel’s Model in a non-clinical sample. Additionally, five risk factors and six protective factors were proposed as possible extensions to Gatchel’s Model. To address these aims, a prospective longitudinal mixed-method research design was used. Quantitative data was collected in Phase 1 via a comprehensive postal questionnaire. Phase 2 consisted of a follow-up questionnaire 3 months post-baseline. Phase 3 consisted of semi-structured interviews with a subset of the original sample 12 months post follow-up, which used qualitative data to provide a further in-depth examination of the experience and process of chronic pain from respondents’ point of view. The results indicate chronic pain is associated with high levels of anxiety and depressive symptoms. However, the levels of disability reported by this Queensland sample were generally lower than those reported by clinical samples and consistent with disability data reported in a New South Wales population-based study. With regard to the second aim of this program of research, while some elements of the pain experience of this sample were consistent with that described by Gatchel’s Model, overall the model was not a good fit with the experience of this non-clinical sample. The findings indicate that passive coping strategies (minimising activity), catastrophising, self efficacy, optimism, social support, active strategies (use of distraction) and the belief that emotions affect pain may be important to consider in understanding the processes that underlie the transition to and continuation of chronic pain.
Resumo:
This paper deals with the problem of using the data mining models in a real-world situation where the user can not provide all the inputs with which the predictive model is built. A learning system framework, Query Based Learning System (QBLS), is developed for improving the performance of the predictive models in practice where not all inputs are available for querying to the system. The automatic feature selection algorithm called Query Based Feature Selection (QBFS) is developed for selecting features to obtain a balance between the relative minimum subset of features and the relative maximum classification accuracy. Performance of the QBLS system and the QBFS algorithm is successfully demonstrated with a real-world application
Resumo:
The current policy decision making in Australia regarding non-health public investments (for example, transport/housing/social welfare programmes) does not quantify health benefits and costs systematically. To address this knowledge gap, this study proposes an economic model for quantifying health impacts of public policies in terms of dollar value. The intention is to enable policy-makers in conducting economic evaluation of health effects of non-health policies and in implementing policies those reduce health inequalities as well as enhance positive health gains of the target population. Health Impact Assessment (HIA) provides an appropriate framework for this study since HIA assesses the beneficial and adverse effects of a programme/policy on public health and on health inequalities through the distribution of those effects. However, HIA usually tries to influence the decision making process using its scientific findings, mostly epidemiological and toxicological evidence. In reality, this evidence can not establish causal links between policy and health impacts since it can not explain how an individual or a community reacts to changing circumstances. The proposed economic model addresses this health-policy linkage using a consumer choice approach that can explain changes in group and individual behaviour in a given economic set up. The economic model suggested in this paper links epidemiological findings with economic analysis to estimate the health costs and benefits of public investment policies. That is, estimating dollar impacts when health status of the exposed population group changes by public programmes – for example, transport initiatives to reduce congestion by building new roads/ highways/ tunnels etc. or by imposing congestion taxes. For policy evaluation purposes, the model is incorporated in the HIA framework by establishing association among identified factors, which drive changes in the behaviour of target population group and in turn, in the health outcomes. The economic variables identified to estimate the health inequality and health costs are levels of income, unemployment, education, age groups, disadvantaged population groups, mortality/morbidity etc. However, though the model validation using case studies and/or available database from Australian non-health policy (say, transport) arena is in the future tasks agenda, it is beyond the scope of this current paper.
Resumo:
The application of object-based approaches to the problem of extracting vegetation information from images requires accurate delineation of individual tree crowns. This paper presents an automated method for individual tree crown detection and delineation by applying a simplified PCNN model in spectral feature space followed by post-processing using morphological reconstruction. The algorithm was tested on high resolution multi-spectral aerial images and the results are compared with two existing image segmentation algorithms. The results demonstrate that our algorithm outperforms the other two solutions with the average accuracy of 81.8%.
An indexing model for sustainable urban environmental management : the case of Gold Coast, Australia
Resumo:
Improving urban ecosystems and the quality of life of citizens have become a central issue in the global effort of creating sustainable built environments. As human beings our lives completely depend on the sustainability of the nature and we need to protect and manage natural resources in a more sustainable way in order to sustain our existence. As a result of population growth and rapid urbanisation, increasing demand of productivity depletes and degrades natural resources. However, the increasing activities and rapid development require more resources, and therefore, ecological planning becomes an essential vehicle in preserving scarce natural resources. This paper aims to indentify the interation between urban ecosystems and human activities in the context of urban sustainability and explores the degrading environmental impacts of this interaction and the necessity and benefits of using sustainability indicators as a tool in sustainable urban evnironmental management. Additionally, the paper also introduces an environmental sustainability indexing model (ASSURE) as an innovative approach to evaluate the environmental conditions of built environment.