125 resultados para low dimensional structures
Resumo:
The effect of tunnel junction resistances on the electronic property and the magneto-resistance of few-layer graphene sheet networks is investigated. By decreasing the tunnel junction resistances, transition from strong localization to weak localization occurs and magneto-resistance changes from positive to negative. It is shown that the positive magneto-resistance is due to Zeeman splitting of the electronic states at the Fermi level as it changes with the bias voltage. As the tunnel junction resistances decrease, the network resistance is well described by 2D weak localization model. Sensitivity of the magneto-resistance to the bias voltage becomes negligible and diminishes with increasing temperature. It is shown 2D weak localization effect mainly occurs inside of the few-layer graphene sheets and the minimum temperature of 5 K in our experiments is not sufficiently low to allow us to observe 2D weak localization effect of the networks as it occurs in 2D disordered metal films. Furthermore, defects inside the few-layer graphene sheets have negligible effect on the resistance of the networks which have small tunnel junction resistances between few-layer graphene sheets
Resumo:
In this chapter, ideas from ecological psychology and nonlinear dynamics are integrated to characterise decision-making as an emergent property of self-organisation processes in the interpersonal interactions that occur in sports teams. A conceptual model is proposed to capture constraints on dynamics of decisions and actions in dyadic systems, which has been empirically evaluated in simulations of interpersonal interactions in team sports. For this purpose, co-adaptive interpersonal dynamics in team sports such as rubgy union have been studied to reveal control parameter and collective variable relations in attacker-defender dyads. Although interpersonal dynamics of attackers and defenders in 1 vs 1 situations showed characteristics of chaotic attractors, the informational constraints of rugby union typically bounded dyadic systems into low dimensional attractors. Our work suggests that the dynamics of attacker-defender dyads can be characterised as an evolving sequence since players' positioning and movements are connected in diverse ways over time.
Resumo:
Ecological dynamics characterizes adaptive behavior as an emergent, self-organizing property of interpersonal interactions in complex social systems. The authors conceptualize and investigate constraints on dynamics of decisions and actions in the multiagent system of team sports. They studied coadaptive interpersonal dynamics in rugby union to model potential control parameter and collective variable relations in attacker–defender dyads. A videogrammetry analysis revealed how some agents generated fluctuations by adapting displacement velocity to create phase transitions and destabilize dyadic subsystems near the try line. Agent interpersonal dynamics exhibited characteristics of chaotic attractors and informational constraints of rugby union boxed dyadic systems into a low dimensional attractor. Data suggests that decisions and actions of agents in sports teams may be characterized as emergent, self-organizing properties, governed by laws of dynamical systems at the ecological scale. Further research needs to generalize this conceptual model of adaptive behavior in performance to other multiagent populations.
Resumo:
Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), (similar to)-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.
Resumo:
Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), ε-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.
Resumo:
This paper presents a framework for performing real-time recursive estimation of landmarks’ visual appearance. Imaging data in its original high dimensional space is probabilistically mapped to a compressed low dimensional space through the definition of likelihood functions. The likelihoods are subsequently fused with prior information using a Bayesian update. This process produces a probabilistic estimate of the low dimensional representation of the landmark visual appearance. The overall filtering provides information complementary to the conventional position estimates which is used to enhance data association. In addition to robotics observations, the filter integrates human observations in the appearance estimates. The appearance tracks as computed by the filter allow landmark classification. The set of labels involved in the classification task is thought of as an observation space where human observations are made by selecting a label. The low dimensional appearance estimates returned by the filter allow for low cost communication in low bandwidth sensor networks. Deployment of the filter in such a network is demonstrated in an outdoor mapping application involving a human operator, a ground and an air vehicle.
Resumo:
In this paper, we present the application of a non-linear dimensionality reduction technique for the learning and probabilistic classification of hyperspectral image. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. It gives much greater information content per pixel on the image than a normal colour image. This should greatly help with the autonomous identification of natural and manmade objects in unfamiliar terrains for robotic vehicles. However, the large information content of such data makes interpretation of hyperspectral images time-consuming and userintensive. We propose the use of Isomap, a non-linear manifold learning technique combined with Expectation Maximisation in graphical probabilistic models for learning and classification. Isomap is used to find the underlying manifold of the training data. This low dimensional representation of the hyperspectral data facilitates the learning of a Gaussian Mixture Model representation, whose joint probability distributions can be calculated offline. The learnt model is then applied to the hyperspectral image at runtime and data classification can be performed.
Resumo:
Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.
Resumo:
ZnO is a wide band-gap semiconductor that has several desirable properties for optoelectronic devices. With its large exciton binding energy of ~60 meV, ZnO is a promising candidate for high stability, room-temperature luminescent and lasing devices [1]. Ultraviolet light-emitting diodes (LEDs) based on ZnO homojunctions had been reported [2,3], while preparing stable p-type ZnO is still a challenge. An alternative way is to use other p-type semiconductors, ether inorganic or organic, to form heterojunctions with the naturally n-type ZnO. The crystal structure of wurtzite ZnO can be described as Zn and O atomic layers alternately stacked along the [0001] direction. Because of the fastest growth rate over the polar (0001) facet, ZnO crystals tend to grow into one-dimensional structures, such as nanowires and nanobelts. Since the first report of ZnO nanobelts in 2001 [4], ZnO nanostructures have been particularly studied for their potential applications in nano-sized devices. Various growth methods have been developed for growing ZnO nanostructures, such as chemical vapor deposition (CVD), Metal-organic CVD (MOCVD), aqueous growth and electrodeposition [5]. Based on the successful synthesis of ZnO nanowires/nanorods, various types of hybrid light-emitting diodes (LEDs) were made. Inorganic p-type semiconductors, such as GaN, Si and SiC, have been used as substrates to grown ZnO nanorods/nanowires for making LEDs. GaN is an ideal material that matches ZnO not only in the crystal structure but also in the energy band levels. However, to prepare Mg-doped p-GaN films via epitaxial growth is still costly. In comparison, the organic semiconductors are inexpensive and have many options to select, for a large variety of p-type polymer or small-molecule semiconductors are now commercially available. The organic semiconductor has the limitation of durability and environmental stability. Many polymer semiconductors are susceptible to damage by humidity or mere exposure to oxygen in the air. Also the carrier mobilities of polymer semiconductors are generally lower than the inorganic semiconductors. However, the combination of polymer semiconductors and ZnO nanostructures opens the way for making flexible LEDs. There are few reports on the hybrid LEDs based on ZnO/polymer heterojunctions, some of them showed the characteristic UV electroluminescence (EL) of ZnO. This chapter reports recent progress of the hybrid LEDs based on ZnO nanowires and other inorganic/organic semiconductors. We provide an overview of the ZnO-nanowire-based hybrid LEDs from the perspectives of the device configuration, growth methods of ZnO nanowires and the selection of p-type semiconductors. Also the device performances and remaining issues are presented.
Resumo:
To recognize faces in video, face appearances have been widely modeled as piece-wise local linear models which linearly approximate the smooth yet non-linear low dimensional face appearance manifolds. The choice of representations of the local models is crucial. Most of the existing methods learn each local model individually meaning that they only anticipate variations within each class. In this work, we propose to represent local models as Gaussian distributions which are learned simultaneously using the heteroscedastic probabilistic linear discriminant analysis (PLDA). Each gallery video is therefore represented as a collection of such distributions. With the PLDA, not only the within-class variations are estimated during the training, the separability between classes is also maximized leading to an improved discrimination. The heteroscedastic PLDA itself is adapted from the standard PLDA to approximate face appearance manifolds more accurately. Instead of assuming a single global within-class covariance, the heteroscedastic PLDA learns different within-class covariances specific to each local model. In the recognition phase, a probe video is matched against gallery samples through the fusion of point-to-model distances. Experiments on the Honda and MoBo datasets have shown the merit of the proposed method which achieves better performance than the state-of-the-art technique.
Resumo:
The contextuality of changing attitudes makes them extremely difficult to model. This paper scales up Quantum Decision Theory (QDT) to a social setting, using it to model the manner in which social contexts can interact with the process of low elaboration attitude change. The elements of this extended theory are presented, along with a proof of concept computational implementation in a low dimensional subspace. This model suggests that a society's understanding of social issues will settle down into a static or frozen configuration unless that society consists of a range of individuals with varying personality types and norms.
Resumo:
Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.
Resumo:
Robust descriptor matching across varying lighting conditions is important for vision-based robotics. We present a novel strategy for quantifying the lighting variance of descriptors. The strategy works by utilising recovered low dimensional mappings from Isomap and our measure of the lighting variance of each of these mappings. The resultant metric allows different descriptors to be compared given a dataset and a set of keypoints. We demonstrate that the SIFT descriptor typically has lower lighting variance than other descriptors, although the result depends on semantic class and lighting conditions.
Resumo:
The effect of a SiO2 nanolayer and annealing temperature on the UV/visible room-temperature photoluminescence (PL) from SiNx films synthesized by rf magnetron sputtering is studied. The PL intensity can be maximized when the SiO2 layer is 510 nm thick at 800 °C annealing temperature and only 2 nm at 1000 °C. A compositionstructureproperty analysis reveals that the PL intensity is directly related to both the surface chemical states and the content of the SiO and SiN bonds in the SiNx films. These results are relevant for the development of advanced optoelectronic and photonic emitters and sensors. © 2010 Elsevier B.V. All rights reserved.
Resumo:
This article introduces a deterministic approach to using low-temperature, thermally non-equilibrium plasmas to synthesize delicate low-dimensional nanostructures of a small number of atoms on plasma exposed surfaces. This approach is based on a set of plasma-related strategies to control elementary surface processes, an area traditionally covered by surface science. Major issues related to balanced delivery and consumption of building units, appropriate choice of process conditions, and account of plasma-related electric fields, electric charges and polarization effects are identified and discussed in the quantum dot nanoarray context. Examples of a suitable plasma-aided nanofabrication facility and specific effects of a plasma-based environment on self-organized growth of size- and position-uniform nanodot arrays are shown. These results suggest a very positive outlook for using low-temperature plasma-based nanotools in high-precision nanofabrication of self-assembled nanostructures and elements of nanodevices, one of the areas of continuously rising demand from academia and industry.