64 resultados para item recommendation
Resumo:
Recommender systems provide personalized advice for customers online based on their own preferences, while reputation systems generate a community advice on the quality of items on the Web. Both systems use users’ ratings to generate their output. In this paper, we propose to combine reputation models with recommender systems to enhance the accuracy of recommendations. The main contributions include two methods for merging two ranked item lists which are generated based on recommendation scores and reputation scores, respectively, and a personalized reputation method to generate item reputations based on users’ interests. The proposed merging methods can be applicable to any recommendation methods and reputation methods, i.e., they are independent from generating recommendation scores and reputation scores. The experiments we conducted showed that the proposed methods could enhance the accuracy of existing recommender systems.
Resumo:
In this paper we discuss our current efforts to develop and implement an exploratory, discovery mode assessment item into the total learning and assessment profile for a target group of about 100 second level engineering mathematics students. The assessment item under development is composed of 2 parts, namely, a set of "pre-lab" homework problems (which focus on relevant prior mathematical knowledge, concepts and skills), and complementary computing laboratory exercises which are undertaken within a fixed (1 hour) time frame. In particular, the computing exercises exploit the algebraic manipulation and visualisation capabilities of the symbolic algebra package MAPLE, with the aim of promoting understanding of certain mathematical concepts and skills via visual and intuitive reasoning, rather than a formal or rigorous approach. The assessment task we are developing is aimed at providing students with a significant learning experience, in addition to providing feedback on their individual knowledge and skills. To this end, a noteworthy feature of the scheme is that marks awarded for the laboratory work are primarily based on the extent to which reflective, critical thinking is demonstrated, rather than the amount of CBE-style tasks completed by the student within the allowed time. With regard to student learning outcomes, a novel and potentially critical feature of our scheme is that the assessment task is designed to be intimately linked to the overall course content, in that it aims to introduce important concepts and skills (via individual student exploration) which will be revisited somewhat later in the pedagogically more restrictive formal lecture component of the course (typically a large group plenary format). Furthermore, the time delay involved, or "incubation period", is also a deliberate design feature: it is intended to allow students the opportunity to undergo potentially important internal re-adjustments in their understanding, before being exposed to lectures on related course content which are invariably delivered in a more condensed, formal and mathematically rigorous manner. In our presentation, we will discuss in more detail our motivation and rationale for trailing such a scheme for the targeted student group. Some of the advantages and disadvantages of our approach (as we perceived them at the initial stages) will also be enumerated. In a companion paper, the theoretical framework for our approach will be more fully elaborated, and measures of student learning outcomes (as obtained from eg. student provided feedback) will be discussed.
Resumo:
The purpose of this study was to identify the pedagogical knowledge relevant to the successful completion of a pie chart item. This purpose was achieved through the identification of the essential fluencies that 12–13-year-olds required for the successful solution of a pie chart item. Fluency relates to ease of solution and is particularly important in mathematics because it impacts on performance. Although the majority of students were successful on this multiple choice item, there was considerable divergence in the strategies they employed. Approximately two-thirds of the students employed efficient multiplicative strategies, which recognised and capitalised on the pie chart as a proportional representation. In contrast, the remaining one-third of students used a less efficient additive strategy that failed to capitalise on the representation of the pie chart. The results of our investigation of students’ performance on the pie chart item during individual interviews revealed that five distinct fluencies were involved in the solution process: conceptual (understanding the question), linguistic (keywords), retrieval (strategy selection), perceptual (orientation of a segment of the pie chart) and graphical (recognising the pie chart as a proportional representation). In addition, some students exhibited mild disfluencies corresponding to the five fluencies identified above. Three major outcomes emerged from the study. First, a model of knowledge of content and students for pie charts was developed. This model can be used to inform instruction about the pie chart and guide strategic support for students. Second, perceptual and graphical fluency were identified as two aspects of the curriculum, which should receive a greater emphasis in the primary years, due to their importance in interpreting pie charts. Finally, a working definition of fluency in mathematics was derived from students’ responses to the pie chart item.
Resumo:
The explosive growth of the World-Wide-Web and the emergence of ecommerce are the major two factors that have led to the development of recommender systems (Resnick and Varian, 1997). The main task of recommender systems is to learn from users and recommend items (e.g. information, products or books) that match the users’ personal preferences. Recommender systems have been an active research area for more than a decade. Many different techniques and systems with distinct strengths have been developed to generate better quality recommendations. One of the main factors that affect recommenders’ recommendation quality is the amount of information resources that are available to the recommenders. The main feature of the recommender systems is their ability to make personalised recommendations for different individuals. However, for many ecommerce sites, it is difficult for them to obtain sufficient knowledge about their users. Hence, the recommendations they provided to their users are often poor and not personalised. This information insufficiency problem is commonly referred to as the cold-start problem. Most existing research on recommender systems focus on developing techniques to better utilise the available information resources to achieve better recommendation quality. However, while the amount of available data and information remains insufficient, these techniques can only provide limited improvements to the overall recommendation quality. In this thesis, a novel and intuitive approach towards improving recommendation quality and alleviating the cold-start problem is attempted. This approach is enriching the information resources. It can be easily observed that when there is sufficient information and knowledge base to support recommendation making, even the simplest recommender systems can outperform the sophisticated ones with limited information resources. Two possible strategies are suggested in this thesis to achieve the proposed information enrichment for recommenders: • The first strategy suggests that information resources can be enriched by considering other information or data facets. Specifically, a taxonomy-based recommender, Hybrid Taxonomy Recommender (HTR), is presented in this thesis. HTR exploits the relationship between users’ taxonomic preferences and item preferences from the combination of the widely available product taxonomic information and the existing user rating data, and it then utilises this taxonomic preference to item preference relation to generate high quality recommendations. • The second strategy suggests that information resources can be enriched simply by obtaining information resources from other parties. In this thesis, a distributed recommender framework, Ecommerce-oriented Distributed Recommender System (EDRS), is proposed. The proposed EDRS allows multiple recommenders from different parties (i.e. organisations or ecommerce sites) to share recommendations and information resources with each other in order to improve their recommendation quality. Based on the results obtained from the experiments conducted in this thesis, the proposed systems and techniques have achieved great improvement in both making quality recommendations and alleviating the cold-start problem.
Resumo:
BACKGROUND: The Edinburgh Postnatal Depression Scale (EPDS) has been validated and used extensively in screening for depression in new mothers, both in English speaking and non-English speaking communities. While some studies have reported the use of the EPDS with fathers, none have validated it for this group, and thus the appropriate cut-off score for screening for depression or anxiety caseness for this population is not known. METHODS: Couples were recruited antenatally and interviewed at six weeks postpartum. EPDS scores and distress caseness (depression or anxiety disorders) for 208 fathers and 230 mothers were determined using the Diagnostic Interview Schedule. RESULTS: Analyses of the EPDS for fathers using distress caseness (depression or anxiety disorders) as the criterion shows that a cut-off of 5/6 has optimum receiver operating characteristics. Furthermore acceptable reliability (split-half and internal consistency) and validity (concurrent) coefficients were obtained. For mothers the optimum cut-off screening value to detect distress caseness was 7/8. Item analysis revealed that fathers endorsed seven of the ten items at lower rates to mothers, with the most significant being that referring to crying. CONCLUSIONS: The EPDS is a reliable and valid measure of mood in fathers. Screening for depression or anxiety disorders in fathers requires a two point lower cut-off than screening for depression or anxiety in mothers, and we recommend this cut-off to be 5/6
Resumo:
Since the 1970s the internationalisation process of firms has attracted wide research interest. One of the dominant explanations of firm internationalisation resulting from this research activity is the Uppsala stages model. In this paper, a pre-internationalisation phase is incorporated into the traditional Uppsala model to address the question: What are the antecedents of this model? Four concepts are proposed as the key components that define the experiential learning process underlying a firm’s pre-export phase: export stimuli, attitudinal/psychological commitment, resources and lateral rigidity. Through a survey of 290 Australian exporting and non-exporting small-medium sized firms, data relating to the four pre-internationalisation concepts is collected and an Export Readiness Index (ERI) is constructed through factor analysis. Using logistic regression, the ERI is tested as a tool for analysing export readiness among Australian SMEs.
Resumo:
The 27-item Intolerance of Uncertainty Scale (IUS) has become one of the most frequently used measure of Intolerance of Uncertainty. More recently, an abridged, 12-item version of the IUS has been developed. The current research used clinical (n = 50) and non-clinical (n = 56) samples to examine and compare the psychometric properties of both versions of the IUS. The two scales showed good internal consistency at both the total and subscale level and had satisfactory test-retest reliability. Both versions were correlated with worry and trait anxiety and had satisfactory concurrent validity. Significant differences between the scores of the clinical and non-clinical sample supported discriminant validity. Predictive validity was also supported for the two scales. Total scores, in the case of the clinical sample, and a subscale, in the case of the non-clinical sample, significantly predicted pathological worry and trait anxiety. Overall, the clinicians and researchers can use either version of the IUS with confidence, due to their sound psychometric properties.
Resumo:
In recent years, there is a dramatic growth in number and popularity of online social networks. There are many networks available with more than 100 million registered users such as Facebook, MySpace, QZone, Windows Live Spaces etc. People may connect, discover and share by using these online social networks. The exponential growth of online communities in the area of social networks attracts the attention of the researchers about the importance of managing trust in online environment. Users of the online social networks may share their experiences and opinions within the networks about an item which may be a product or service. The user faces the problem of evaluating trust in a service or service provider before making a choice. Recommendations may be received through a chain of friends network, so the problem for the user is to be able to evaluate various types of trust opinions and recommendations. This opinion or recommendation has a great influence to choose to use or enjoy the item by the other user of the community. Collaborative filtering system is the most popular method in recommender system. The task in collaborative filtering is to predict the utility of items to a particular user based on a database of user rates from a sample or population of other users. Because of the different taste of different people, they rate differently according to their subjective taste. If two people rate a set of items similarly, they share similar tastes. In the recommender system, this information is used to recommend items that one participant likes, to other persons in the same cluster. But the collaborative filtering system performs poor when there is insufficient previous common rating available between users; commonly known as cost start problem. To overcome the cold start problem and with the dramatic growth of online social networks, trust based approach to recommendation has emerged. This approach assumes a trust network among users and makes recommendations based on the ratings of the users that are directly or indirectly trusted by the target user.
Resumo:
know personally. They also communicate with other members of the network who are the friends of their friends and may be friends of their friend’s network. They share their experiences and opinions within the social network about an item which may be a product or service. The user faces the problem of evaluating trust in a service or service provider before making a choice. Opinions, reputations and ecommendations will influence users' choice and usage of online resources. Recommendations may be received through a chain of friends of friends, so the problem for the user is to be able to evaluate various types of trust recommendations and reputations. This opinion or ecommendation has a great influence to choose to use or enjoy the item by the other user of the community. Users share information on the level of trust they explicitly assign to other users. This trust can be used to determine while taking decision based on any recommendation. In case of the absence of direct connection of the recommender user, propagated trust could be useful.
Resumo:
Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.
Resumo:
Social tags are an important information source in Web 2.0. They can be used to describe users’ topic preferences as well as the content of items to make personalized recommendations. However, since tags are arbitrary words given by users, they contain a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise brings difficulties to improve the accuracy of item recommendations. To eliminate the noise of tags, in this paper we propose to use the multiple relationships among users, items and tags to find the semantic meaning of each tag for each user individually. With the proposed approach, the relevant tags of each item and the tag preferences of each user are determined. In addition, the user and item-based collaborative filtering combined with the content filtering approach are explored. The effectiveness of the proposed approaches is demonstrated in the experiments conducted on real world datasets collected from Amazon.com and citeULike website.
Resumo:
Item folksonomy or tag information is a kind of typical and prevalent web 2.0 information. Item folksonmy contains rich opinion information of users on item classifications and descriptions. It can be used as another important information source to conduct opinion mining. On the other hand, each item is associated with taxonomy information that reflects the viewpoints of experts. In this paper, we propose to mine for users’ opinions on items based on item taxonomy developed by experts and folksonomy contributed by users. In addition, we explore how to make personalized item recommendations based on users’ opinions. The experiments conducted on real word datasets collected from Amazon.com and CiteULike demonstrated the effectiveness of the proposed approaches.
Resumo:
Social tags in web 2.0 are becoming another important information source to describe the content of items as well as to profile users’ topic preferences. However, as arbitrary words given by users, tags contains a lot of noise such as tag synonym and semantic ambiguity a large number personal tags that only used by one user, which brings challenges to effectively use tags to make item recommendations. To solve these problems, this paper proposes to use a set of related tags along with their weights to represent semantic meaning of each tag for each user individually. A hybrid recommendation generation approaches that based on the weighted tags are proposed. We have conducted experiments using the real world dataset obtained from Amazon.com. The experimental results show that the proposed approaches outperform the other state of the art approaches.