47 resultados para high-performance liquid chromatography coupled with
Resumo:
A method for determination of tricyclazole in water using solid phase extraction and high performance liquid chromatography (HPLC) with UV detection at 230nm and a mobile phase of acetonitrile:water (20:80, v/v) was developed. A performance comparison between two types of solid phase sorbents, the C18 sorbent of Supelclean ENVI-18 cartridge and the styrene-divinyl benzene copolymer sorbent of Sep-Pak PS2-Plus cartridge was conducted. The Sep-Pak PS2-Plus cartridges were found more suitable for extracting tricyclazole from water samples than the Supelclean ENVI-18 cartridges. For this cartridge, both methanol and ethyl acetate produced good results. The method was validated with good linearity and with a limit of detection of 0.008gL-1 for a 500-fold concentration through the SPE procedure. The recoveries of the method were stable at 80% and the precision was from 1.1-6.0% within the range of fortified concentrations. The validated method was also applied to measure the concentrations of tricyclazole in real paddy water.
Resumo:
Liuwei Dihuang Wan (LWD), a classic Chinese medicinal formulae, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. It has attracted increasingly much attention as one of the most popular and valuable herbal medicines. However, the systematic analysis of the chemical constituents of LDW is difficult and thus has not been well established. In this paper, a rapid, sensitive and reliable ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight high-definition mass spectrometry (UPLC-ESI-Q-TOF-MS) method with automated MetaboLynx analysis in positive and negative ion mode was established to characterize the chemical constituents of LDW. The analysis was performed on a Waters UPLCTM HSS T3 using a gradient elution system. MS/MS fragmentation behavior was proposed for aiding the structural identification of the components. Under the optimized conditions, a total of 50 peaks were tentatively characterized by comparing the retention time and MS data. It is concluded that a rapid and robust platform based on UPLC-ESI-Q-TOF-MS has been successfully developed for globally identifying multiple-constituents of traditional Chinese medicine prescriptions. This is the first report on systematic analysis of the chemical constituents of LDW. This article is protected by copyright. All rights reserved.
Resumo:
This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.
Resumo:
Scoparone (6,7-dimethoxycoumarin) is known to have a wide range of pharmacological properties. In this study, a rapid and validated ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTof-MS) method was developed to investigate the metabolism of scoparone in rat for the first time. The new method reduced the sample handling and analytical time by three- to six-fold, and the detection limit by five- to 1000-fold, compared to published methods. Far more metabolites were detected and identified compared to published data, which were preliminarily identified as scopoletin, isoscopoletin, isofraxidin, and fraxidin, respectively, when subjected to tandem mass spectrometry analyses. It is found that the metabolic trajectory of scoparone in rat focused on phase I metabolism which is obviously different from published results, and revealed a wide range of pharmacological properties of scoparone partly attributed to the bioactivities of its metabolites.
Resumo:
Chronic venous leg ulcers are a detrimental health issue plaguing our society, resulting in long term pain, immobility and decreased quality of life for a large proportion of sufferers. The frequency of these chronic wounds has led current research to focus on the wound environment to provide important information regarding the prolonged, fluctuated or static healing patterns of these wounds. Disruption to the normal wound healing process results in release of multiple factors in the wound environment that could correlate to wound chronicity. These biochemical factors can often be detected through non-invasively sampling chronic wound fluid (CWF) from the site of injury. Of note, whilst there are numerous studies comparing acute and chronic wound fluids, there have not been any reports in the literature employing a longitudinal study in order to track biochemical changes in wound fluid as patients transition from a non-healing to healed state. Initially the objective of this study was to identify biochemical changes in CWF associated with wound healing using a proteomic approach. The proteomic approach incorporated a multi-dimensional liquid chromatography fractionation technique coupled with mass spectrometry (MS) to enable identification of proteins present in lower concentrations in CWF. Not surprisingly, many of the proteins identified in wound fluid were acute phase proteins normally expressed during the inflammatory phase of healing. However, the number of proteins positively identified by MS was quite low. This was attributed to the diverse range in concentration of protein species in CWF making it challenging to detect the diagnostically relevant low molecular weight proteins. In view of this, SELDI-TOF MS was also explored as a means to target low molecular weight proteins in sequential patient CWF samples during the course of healing. Unfortunately, the results generated did not yield any peaks of interest that were altered as wounds transitioned to a healed state. During the course of proteomic assessment of CWF, it became evident that a fraction of non-proteinaceous compounds strongly absorbed at 280 nm. Subsequent analyses confirmed that most of these compounds were in fact part of the purine catabolic pathway, possessing distinctive aromatic rings and which results in high absorbance at 254 nm. The accumulation of these purinogenic compounds in CWF suggests that the wound bed is poorly oxygenated resulting in a switch to anaerobic metabolism and consequently ATP breakdown. In addition, the presence of the terminal purine catabolite, uric acid (UA), indicates that the enzyme xanthine oxidoreductase (XOR) catalyses the reaction of hypoxanthine to xanthine and finally to UA. More importantly, the studies provide evidence for the first time of the exogenous presence of XOR in CWF. XOR is the only enzyme in humans capable of catalysing the production of UA in conjunction with a burst of the highly reactive superoxide radical and other oxidants like H2O2. Excessive release of these free radicals in the wound environment can cause cellular damage disrupting the normal wound healing process. In view of this, a sensitive and specific assay was established for monitoring low concentrations of these catabolites in CWF. This procedure involved combining high performance liquid chromatography (HPLC) with tandem mass spectrometry and multiple reaction monitoring (MRM). This application was selective, using specific MRM transitions and HPLC separations for each analyte, making it ideal for the detection and quantitation of purine catabolites in CWF. The results demonstrated that elevated levels of UA were detected in wound fluid obtained from patients with clinically worse ulcers. This suggests that XOR is active in the wound site generating significant amounts of reactive oxygen species (ROS). In addition, analysis of the amount of purine precursors in wound fluid revealed elevated levels of purine precursors in wound fluid from patients with less severe ulcers. Taken together, the results generated in this thesis suggest that monitoring changes of purine catabolites in CWF is likely to provide valuable information regarding the healing patterns of chronic venous leg ulcers. XOR catalysis of purine precursors not only provides a method for monitoring the onset, prognosis and progress of chronic venous leg ulcers, but also provides a potential therapeutic target by inhibiting XOR, thus blocking UA and ROS production. Targeting a combination of these purinogenic compounds and XOR could lead to the development of novel point of care diagnostic tests. Therefore, further investigation of these processes during wound healing will be worthwhile and may assist in elucidating the pathogenesis of this disease state, which in turn may lead to the development of new diagnostics and therapies that target these processes.
Resumo:
A method for the rapid and simultaneous determination of 6,7-dimethylesculetin (CAS 120-08-1) and geniposide (CAS 24512-63-8) in rat plasma has been developed, using validated high performance liquid chromatography (HPLC) with solid phase extraction (SPE). The HPLC analysis was performed on a commercially available column (200 mm x 4.6 mm, 5 microm) with acetonitrile-methanol-0.1% aqueous formic acid as mobile phase and the UV detection at 343 nm and 238 nm for 6,7-dimethylesculetin and geniposide, respectively. The calibration curves for 6,7-dimethylesculetin and geniposide were linear over the range 0.4-25.6 microg/mL and 1.12-71.68 microg/mL, respectively. The lower limits of quantitation were 0.40 microg/ mL and 1.12 microg/mL, and the lower limits of detection were 0.06 microg/mL and 0.09 microg/ mL, respectively. The intra-day and inter-day precision for 6,7-dimethylesculetin and geniposide were < 5%, whereas the absolute recovery percentages were > 74%. A successful application of the developed HPLC analysis was demonstrated for the pharmacokinetic study of a Traditional Chinese Medicine formula of Yin Chen Hao Tang preparation.
Resumo:
A completely validated method based on HPLC coupled with photodiode array detector (HPLC-UV) was described for evaluating and controlling quality of Yin Chen Hao Tang extract (YCHTE). First, HPLC-UV fingerprint chromatogram of YCHTE was established for preliminarily elucidating amount and chromatographic trajectory of chemical constituents in YCHTE. Second, for the first time, five mainly bioactive constituents in YCHTE were simultaneously determined based on fingerprint chromatogram for furthermore controlling the quality of YCHTE quantitatively. The developed method was applied to analyze 12 batches of YCHTE samples which consisted of herbal drugs from different places of production, showed acceptable linearity, intraday (RSD <5%), interday precision (RSD <4.80%), and accuracy (RSD <2.80%). As a result, fingerprint chromatogram determined 15 representative general fingerprint peaks, and the fingerprint chromatogram resemblances are all better than 0.9996. The contents of five analytes in different batches of YCHTE samples do not indicate significant difference. So, it is concluded that the developed HPLC-UV method is a more fully validated and complete method for evaluating and controlling the quality of YCHTE.
Resumo:
Reactive oxygen species are generated during ischaemia-reperfusion of tissue. Oxidation of thymidine by hydroxyl radicals (HO) leads to the formation of 5,6-dihydroxy-5,6-dihydrothymidine (thymidine glycol). Thymidine glycol is excreted in urine and can be used as biomarker of oxidative DNA damage. Time dependent changes in urinary excretion rates of thymidine glycol were determined in six patients after kidney transplantation and in six healthy controls. A new analytical method was developed involving affinity chromatography and subsequent reverse-phase high-performance liquid chromatography (RP-HPLC) with a post-column chemical reaction detector and endpoint fluorescence detection. The detection limit of this fluorimetric assay was 1.6 ng thymidine glycol per ml urine, which corresponds to about half of the physiological excretion level in healthy control persons. After kidney transplantation the urinary excretion rate of thymidine glycol increased gradually reaching a maximum around 48 h. The excretion rate remained elevated until the end of the observation period of 10 days. Severe proteinuria with an excretion rate of up to 7.2 g of total protein per mmol creatinine was also observed immediately after transplantation and declined within the first 24 h of allograft function (0.35 + 0.26 g/mmol creatinine). The protein excretion pattern, based on separation of urinary proteins on sodium dodecyl sulphate-polyacrylamide gel electrophorosis (SDS-PAGE), as well as excretion of individual biomarker proteins, indicated nonselective glomerular and tubular damage. The increased excretion of thymidine glycol after kidney transplantation may be explained by ischaemia-reperfusion induced oxidative DNA damage of the transplanted kidney.
Resumo:
Some perfluoroalkyl and polyfluoroalkyl substances (PFASs) have become widespread pollutants detected in human and wildlife samples worldwide. The main objective of this study was to assess temporal trends of PFAS concentrations in human blood in Australia over the last decade (2002–2011), taking into consideration age and sex trends. Pooled human sera from 2002/03 (n=26); 2008/09 (n=24) and 2010/11 (n=24) from South East Queensland, Australia were obtained from de-identified surplus pathology samples and compared with samples collected previously from 2006/07 (n=84). A total of 9775 samples in 158 pools were available for assessment of PFASs. Stratification criteria included sex and age: <16 years (2002/03 only); 0–4 (2006/07, 2008/09, 2010/11); 5–15 (2006/07, 2008/09, 2010/11); 16–30; 31–45; 46–60; and >60 years (all collection periods). Sera were analyzed using on-line solid-phase extraction coupled to high-performance liquid chromatography-isotope dilution-tandem mass spectrometry. Perfluorooctane sulfonate (PFOS) was detected in the highest concentrations ranging from 5.3–19.2 ng/ml (2008/09) to 4.4–17.4 ng/ml (2010/11). Perfluorooctanoate (PFOA) was detected in the next highest concentration ranging from 2.8–7.3 ng/ml (2008/09) to 3.1–6.5 ng/ml (2010/11). All other measured PFASs were detected at concentrations <1 ng/ml with the exception of perfluorohexane sulfonate which ranged from 1.2–5.7 ng/ml (08/09) and 1.4–5.4 ng/ml (10/11). The mean concentrations of both PFOS and PFOA in the 2010/11 period compared to 2002/03 were lower for all adult age groups by 56%. For 5-15 year olds, the decrease was 66% (PFOS) and 63% (PFOA) from 2002/03 to 2010/11. For 0-4 year olds the decrease from 2006/07 (when data were first available for this age group) was 50% (PFOS) and 22% (PFOA). This study provides strong evidence for decreasing serum PFOS and PFOA concentrations in an Australian population from 2002 through 2011. Age trends were variable and concentrations were higher in males than females. Global use has been in decline since around 2002 and hence primary exposure levels are expected to be decreasing. Further biomonitoring will allow assessment of PFAS exposures to confirm trends in exposure as primary and eventually secondary sources are depleted.
Resumo:
This work is concerned with the genetic basis of normal human pigmentation variation. Specifically, the role of polymorphisms within the solute carrier family 45 member 2 (SLC45A2 or membrane associated transporter protein; MATP) gene were investigated with respect to variation in hair, skin and eye colour ― both between and within populations. SLC45A2 is an important regulator of melanin production and mutations in the gene underly the most recently identified form of oculocutaneous albinism. There is evidence to suggest that non-synonymous polymorphisms in SLC45A2 are associated with normal pigmentation variation between populations. Therefore, the underlying hypothesis of this thesis is that polymorphisms in SLC45A2 will alter the function or regulation of the protein, thereby altering the important role it plays in melanogenesis and providing a mechanism for normal pigmentation variation. In order to investigate the role that SLC45A2 polymorphisms play in human pigmentation variation, a DNA database was established which collected pigmentation phenotypic information and blood samples of more than 700 individuals. This database was used as the foundation for two association studies outlined in this thesis, the first of which involved genotyping two previously-described non-synonymous polymorphisms, p.Glu272Lys and p.Phe374Leu, in four different population groups. For both polymorphisms, allele frequencies were significantly different between population groups and the 272Lys and 374Leu alleles were strongly associated with black hair, brown eyes and olive skin colour in Caucasians. This was the first report to show that SLC45A2 polymorphisms were associated with normal human intra-population pigmentation variation. The second association study involved genotyping several SLC45A2 promoter polymorphisms to determine if they also played a role in pigmentation variation. Firstly, the transcription start site (TSS), and hence putative proximal promoter region, was identified using 5' RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE). Two alternate TSSs were identified and the putative promoter region was screened for novel polymorphisms using denaturing high performance liquid chromatography (dHPLC). A novel duplication (c.–1176_–1174dupAAT) was identified along with other previously described single nucleotide polymorphisms (c.–1721C>G and c.–1169G>A). Strong linkage disequilibrium ensured that all three polymorphisms were associated with skin colour such that the –1721G, +dup and –1169A alleles were associated with olive skin in Caucasians. No linkage disequilibrium was observed between the promoter and coding region polymorphisms, suggesting independent effects. The association analyses were complemented with functional data, showing that the –1721G, +dup and –1169A alleles significantly decreased SLC45A2 transcriptional activity. Based on in silico bioinformatic analysis that showed these alleles remove a microphthalmia-associated transcription factor (MITF) binding site, and that MITF is a known regulator of SLC45A2 (Baxter and Pavan, 2002; Du and Fisher, 2002), it was postulated that SLC45A2 promoter polymorphisms could contribute to the regulation of pigmentation by altering MITF binding affinity. Further characterisation of the SLC45A2 promoter was carried out using luciferase reporter assays to determine the transcriptional activity of different regions of the promoter. Five constructs were designed of increasing length and their promoter activity evaluated. Constitutive promoter activity was observed within the first ~200 bp and promoter activity increased as the construct size increased. The functional impact of the –1721G, +dup and –1169A alleles, which removed a MITF consensus binding site, were assessed using electrophoretic mobility shift assays (EMSA) and expression analysis of genotyped melanoblast and melanocyte cell lines. EMSA results confirmed that the promoter polymorphisms affected DNA-protein binding. Interestingly, however, the protein/s involved were not MITF, or at least MITF was not the protein directly binding to the DNA. In an effort to more thoroughly characterise the functional consequences of SLC45A2 promoter polymorphisms, the mRNA expression levels of SLC45A2 and MITF were determined in melanocyte/melanoblast cell lines. Based on SLC45A2’s role in processing and trafficking TYRP1 from the trans-Golgi network to stage 2 melanosmes, the mRNA expression of TYRP1 was also investigated. Expression results suggested a coordinated expression of pigmentation genes. This thesis has substantially contributed to the field of pigmentation by showing that SLC45A2 polymorphisms not only show allele frequency differences between population groups, but also contribute to normal pigmentation variation within a Caucasian population. In addition, promoter polymorphisms have been shown to have functional consequences for SLC45A2 transcription and the expression of other pigmentation genes. Combined, the data presented in this work supports the notion that SLC45A2 is an important contributor to normal pigmentation variation and should be the target of further research to elucidate its role in determining pigmentation phenotypes. Understanding SLC45A2’s function may lead to the development of therapeutic interventions for oculocutaneous albinism and other disorders of pigmentation. It may also help in our understanding of skin cancer susceptibility and evolutionary adaptation to different UV environments, and contribute to the forensic application of pigmentation phenotype prediction.
Resumo:
Retinal image properties such as contrast and spatial frequency play important roles in the development of normal vision. For example, visual environments comprised solely of low contrast and/or low spatial frequencies induce myopia. The visual image is processed by the retina and it then locally controls eye growth. In terms of the retinal neurotransmitters that link visual stimuli to eye growth, there is strong evidence to suggest involvement of the retinal dopamine (DA) system. For example, effectively increasing retinal DA levels by using DA agonists can suppress the development of form-deprivation myopia (FDM). However, whether visual feedback controls eye growth by modulating retinal DA release, and/or some other factors, is still being elucidated. This thesis is chiefly concerned with the relationship between the dopaminergic system and retinal image properties in eye growth control. More specifically, whether the amount of retinal DA release reduces as the complexity of the image degrades was determined. For example, we investigated whether the level of retinal DA release decreased as image contrast decreased. In addition, the effects of spatial frequency, spatial energy distribution slope, and spatial phase on retinal DA release and eye growth were examined. When chicks were 8-days-old, a cone-lens imaging system was applied monocularly (+30 D, 3.3 cm cone). A short-term treatment period (6 hr) and a longer-term treatment period (4.5 days) were used. The short-term treatment tests for the acute reduction in DA release by the visual stimulus, as is seen with diffusers and lenses, whereas the 4.5 day point tests for reduction in DA release after more prolonged exposure to the visual stimulus. In the contrast study, 1.35 cyc/deg square wave grating targets of 95%, 67%, 45%, 12% or 4.2% contrast were used. Blank (0% contrast) targets were included for comparison. In the spatial frequency study, both sine and square wave grating targets with either 0.017 cyc/deg and 0.13 cyc/deg fundamental spatial frequencies and 95% contrast were used. In the spectral slope study, 30% root-mean-squared (RMS) contrast fractal noise targets with spectral fall-off of 1/f0.5, 1/f and 1/f2 were used. In the spatial alignment study, a structured Maltese cross (MX) target, a structured circular patterned (C) target and the scrambled versions of these two targets (SMX and SC) were used. Each treatment group comprised 6 chicks for ocular biometry (refraction and ocular dimension measurement) and 4 for analysis of retinal DA release. Vitreal dihydroxyphenylacetic acid (DOPAC) was analysed through ion-paired reversed phase high performance liquid chromatography with electrochemical detection (HPLC-ED), as a measure of retinal DA release. For the comparison between retinal DA release and eye growth, large reductions in retinal DA release possibly due to the decreased light level inside the cone-lens imaging system were observed across all treated eyes while only those exposed to low contrast, low spatial frequency sine wave grating, 1/f2, C and SC targets had myopic shifts in refraction. Amongst these treatment groups, no acute effect was observed and longer-term effects were only found in the low contrast and 1/f2 groups. These findings suggest that retinal DA release does not causally link visual stimuli properties to eye growth, and these target induced changes in refractive development are not dependent on the level of retinal DA release. Retinal dopaminergic cells might be affected indirectly via other retinal cells that immediately respond to changes in the image contrast of the retinal image.
Resumo:
A fast and accurate procedure has been researched and developed for the simultaneous determination of maltol and ethyl maltol, based on their reaction with iron(III) in the presence of o-phenanthroline in sulfuric acid medium. This reaction was the basis for an indirect kinetic spectrophotometric method, which followed the development of the pink ferroin product (λmax = 524 nm). The kinetic data were collected in the 370–900 nm range over 0–30 s. The optimized method indicates that individual analytes followed Beer’s law in the concentration range of 4.0–76.0 mg L−1 for both maltol and ethyl maltol. The LOD values of 1.6 mg L−1 for maltol and 1.4 mg L−1 for ethyl maltol agree well with those obtained by the alternative high performance liquid chromatography with ultraviolet detection (HPLC-UV). Three chemometrics methods, principal component regression (PCR), partial least squares (PLS) and principal component analysis–radial basis function–artificial neural networks (PC–RBF–ANN), were used to resolve the measured data with small kinetic differences between the two analytes as reflected by the development of the pink ferroin product. All three performed satisfactorily in the case of the synthetic verification samples, and in their application for the prediction of the analytes in several food products. The figures of merit for the analytes based on the multivariate models agreed well with those from the alternative HPLC-UV method involving the same samples.
Resumo:
A kinetic spectrophotometric method with aid of chemometrics is proposed for the simultaneous determination of norfloxacin and rifampicin in mixtures. The proposed method was applied for the simultaneous determination of these two compounds in pharmaceutical formulation and human urine samples, and the results obtained are similar to those obtained by high performance liquid chromatography.
Resumo:
Biotribology, the study of lubrication, wear and friction within the body, has become a topic of high importance in recent times as we continue to encounter debilitating diseases and trauma that destroy function of the joints. A highly successful surgical procedure to replace the joint with an artificial equivalent alleviates dysfunction and pain. However, the wear of the bearing surfaces in prosthetic joints is a significant clinical problem and more patients are surviving longer than the life expectancy of the joint replacement. Revision surgery is associated with increased morbidity and mortality and has a far less successful outcome than primary joint replacement. As such, it is essential to ensure that everything possible is done to limit the rate of revision surgery. Past experience indicates that the survival rate of the implant will be influenced by many parameters, of primary importance, the material properties of the implant, the composition of the synovial fluid and the method of lubrication. In prosthetic joints, effective boundary lubrication is known to take place. The interaction of the boundary lubricant and the bearing material is of utmost importance. The identity of the vital active ingredient within synovial fluid (SF) to which we owe the near frictionless performance of our articulating joints has been the quest of researchers for many years. Once identified, tribo tests can determine what materials and more importantly what surfaces this fraction of SF can function most optimally with. Surface-Active Phospholipids (SAPL) have been implicated as the body’s natural load bearing lubricant. Studies in this thesis are the first to fully characterise the adsorbed SAPL detected on the surface of retrieved prostheses and the first to verify the presence of SAPL on knee prostheses. Rinsings from the bearing surfaces of both hip and knee prostheses removed from revision operations were analysed using High Performance Liquid Chromatography (HPLC) to determine the presence and profile of SAPL. Several common prosthetic materials along with a novel biomaterial were investigated to determine their tribological interaction with various SAPLs. A pin-on-flat tribometer was used to make comparative friction measurements between the various tribo-pairs. A novel material, Pyrolytic Carbon (PyC) was screened as a potential candidate as a load bearing prosthetic material. Friction measurements were also performed on explanted prostheses. SAPL was detected on all retrieved implant bearing surfaces. As a result of the study eight different species of phosphatidylcholines were identified. The relative concentrations of each species were also determined indicating that the unsaturated species are dominant. Initial tribo tests employed a saturated phosphatidylcholine (SPC) and the subsequent tests adopted the addition of the newly identified major constituents of SAPL, unsaturated phosphatidylcholine (USPC), as the test lubricant. All tribo tests showed a dramatic reduction in friction when synthetic SAPL was used as the lubricant under boundary lubrication conditions. Some tribopairs showed more of an affinity to SAPL than others. PyC performed superior to the other prosthetic materials. Friction measurements with explanted prostheses verified the presence and performance of SAPL. SAPL, in particular phosphatidylcholine, plays an essential role in the lubrication of prosthetic joints. Of particular interest was the ability of SAPLs to reduce friction and ultimately wear of the bearing materials. The identification and knowledge of the lubricating constituents of SF is invaluable for not only the future development of artificial joints but also in developing effective cures for several disease processes where lubrication may play a role. The tribological interaction of the various tribo-pairs and SAPL is extremely favourable in the context of reducing friction at the bearing interface. PyC is highly recommended as a future candidate material for use in load bearing prosthetic joints considering its impressive tribological performance.