97 resultados para high channel conductivity
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of LCB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of LCB web panels are determined by assuming conservatively that the web panels are simply supported at the junction between their flange and web elements. Hence finite element analyses were conducted to investigate the elastic shear buckling behavior of LCBs. An improved equation for the higher elastic shear buckling coefficient of LCBs was proposed based on finite element analysis results and included in the ultimate shear capacity equations of the North American cold-formed steel codes. Finite element analyses show that relatively short span LCBs without flange restraints are subjected to a new combined shear and flange distortion action due to the unbalanced shear flow. They also show that significant post-buckling strength is available for LCBs subjected to shear. New equations were also proposed in which post-buckling strength of LCBs was included.
Resumo:
This paper investigates advanced channel compensation techniques for the purpose of improving i-vector speaker verification performance in the presence of high intersession variability using the NIST 2008 and 2010 SRE corpora. The performance of four channel compensation techniques: (a) weighted maximum margin criterion (WMMC), (b) source-normalized WMMC (SN-WMMC), (c) weighted linear discriminant analysis (WLDA), and; (d) source-normalized WLDA (SN-WLDA) have been investigated. We show that, by extracting the discriminatory information between pairs of speakers as well as capturing the source variation information in the development i-vector space, the SN-WLDA based cosine similarity scoring (CSS) i-vector system is shown to provide over 20% improvement in EER for NIST 2008 interview and microphone verification and over 10% improvement in EER for NIST 2008 telephone verification, when compared to SN-LDA based CSS i-vector system. Further, score-level fusion techniques are analyzed to combine the best channel compensation approaches, to provide over 8% improvement in DCF over the best single approach, (SN-WLDA), for NIST 2008 interview/ telephone enrolment-verification condition. Finally, we demonstrate that the improvements found in the context of CSS also generalize to state-of-the-art GPLDA with up to 14% relative improvement in EER for NIST SRE 2010 interview and microphone verification and over 7% relative improvement in EER for NIST SRE 2010 telephone verification.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Shear behaviour of LCBs with web openings is more complicated while their shear strengths are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed experimental study involving 40 shear tests was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at midspan until failure. This paper presents the details of this experimental study and the results of their shear capacities and behavioural characteristics. Experimental results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations have been proposed for the shear strength of LCBs with web openings based on the experimental results from this study.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB) subject to combined bending and shear actions. The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions and predominant shear actions. To date, however, no investigation has been conducted into the strength of LSB sections under combined bending and shear actions. Combined bending and shear is especially prevalent at the supports of continuous span and cantilever beams, where the interaction of high shear force and bending moment can reduce the capacity of a section to well below that for the same section subject only to pure shear or moment. Hence experimental studies were conducted to assess the combined bending and shear behaviour and strengths of LSBs. Eighteen tests were conducted and the results were compared with current AS/NZS 4600 and AS 4100 design rules. AS/NZS 4600 design rules were shown to grossly underestimate the combined bending and shear capacities of LSBs and hence two lower bound design equations were proposed based on experimental results. Use of these equations will significantly improve the confidence and cost-effectiveness of designing LSBs for combined bending and shear actions.
Resumo:
Capacity of current and future high data rate wireless communications depend significantly on how well changes in the wireless channel are predicted and tracked. Generally, this can be estimated by transmitting known symbols. However, this increases overheads if the channel varies over time. Given today’s bandwidth demand and the increased necessity for mobile wireless devices, the contributions of this research are very significant. This study has developed a novel and efficient channel tracking algorithm that can recursively update the channel estimation for wireless broadband communications reducing overheads, therefore increasing the speed of wireless communication systems.
Resumo:
ZnO is a promising photoanode material for dye-sensitized solar cells (DSCs) due to its high bulk electron mobility and because different geometrical structures can easily be tailored. Although various strategies have been taken to improve ZnO-based DSC efficiencies, their performances are still far lower than TiO2 counterparts, mainly because low conductivity Zn2+–dye complexes form on the ZnO surfaces. Here, cone-shaped ZnO nanocrystals with exposed reactive O-terminated {101̅1} facets were synthesized and applied in DSC devices. The devices were compared with DSCs made from more commonly used rod-shaped ZnO nanocrystals where {101̅0} facets are predominantly exposed. When cone-shaped ZnO nanocrystals were used, DSCs sensitized with C218, N719, and D205 dyes universally displayed better power conversion efficiency, with the highest photoconversion efficiency of 4.36% observed with the C218 dye. First-principles calculations indicated that the enhanced DSCs performance with ZnO nanocone photoanodes could be attributed to the strength of binding between the dye molecules and reactive O-terminated {101̅1} ZnO facets and that more effective use of dye molecules occurred due to a significantly less dye aggregation on these ZnO surfaces compared to other ZnO facets.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Many research studies have been carried out to evaluate the behaviour and design of LCBs subject to pure bending actions. However, limited research has been undertaken on the shear behaviour and strength of LCBs. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study based on the validated finite element models. Numerical studies were conducted to investigate the shear buckling and post-buckling behaviour of LCBs. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs. Improved design equations were therefore proposed for the shear strength of LCBs. This paper presents the details of this numerical study of LCBs and the results.
Resumo:
There has been significant progress in the past 2 decades in the field of organic and polymer thin-film transistors. In this paper, we report a combination of stable materials, device architecture, and process conditions that resulted in a patterned gate, small channel length (<5 μm) device that possesses a scaled field-induced conductivity in air that is higher than any organic/polymer transistor reported thus far. The operating voltage is below 10 V; the on-off ratio is high; and the active materials are solution-processable. The semiconducting polymer is a new donor-acceptor polymer with furan-substituted diketopyrrolopyrrole and thienyl-vinylene-thienyl building blocks in the conjugated backbone. One of the major striking features of our work is that the patterned-gate device architecture is suitable for practical applications. We also propose a figure of merit to meaningfully compare polymer/organic transistor performance that takes into account mobility and operating voltage. With this figure of merit, we compare leading organic and polymer transistors that have been hitherto reported. The material and device architecture have shown very high mobility and low operating voltage for such short channel length (below 5 μm) organic/polymer transistors.
Resumo:
(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.
Resumo:
In recent times, blended polymers have shown a lot of promise in terms of easy processability in different shapes and forms. In the present work, polyaniline emeraldine base (PANi-EB) was doped with camphor sulfonic acid (CSA) and combined with the conducting polymer polyfluorene (PF) as well as the insulating polymer polyvinyl chloride (PVC) to synthesize CSA doped PANi-PF and PANi-PVC blended polymers. It is well known that PANi when doped with CSA becomes highly conducting. However, its poor mechanical properties, such as low tensile, compressive, and flexural strength render PANi a non-ideal material to be processed for its various practical applications, such as electromagnetic shielding, anti-corrosion shielding, photolithography and microelectronic devices etc. Thus the search for polymers which are easily processable and are capable of showing high conductivity still continues. PANi-PVC blend was prepared, which showed low conductivity which is limiting factor for certain applications. Therefore, another processable polymer PF was chosen as conducting matrix. Conducting PF can be easily processed into various shapes and forms. Therefore, a blend mixture was prepared by using PANi and PF through the use of CSA as a counter ion which forms a "bridge" between the two polymeric components of the inter-polymer complex. Two blended polymers have been synthesized and investigated for their conductivity behaviour. It was observed that the blended film of CSA doped PANi-PVC showed a room temperature electrical conductivity of 2.8 × 10-7 S/cm where as the blended film made by CSA doped PANi with conducting polymer PF showed a room temperature conductivity of 1.3 × 10-5 S/cm. Blended films were irradiated with 100 MeV silicon ions with a view to increase their conductivity with a fluence ranging from 1011 ions to 1013 per cm2 from 15 UD Pelletron accelerator at NSC, New Delhi.
Resumo:
In this work, we report a novel donor-acceptor based solution processable low band gap polymer semiconductor, PDPP-TNT, synthesized via Suzuki coupling using condensed diketopyrrolopyrrole (DPP) as an acceptor moiety with a fused naphthalene donor building block in the polymer backbone. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The hole mobilities of 0.65 cm2 V-1 s-1 and 0.98 cm2 V -1 s-1 are achieved respectively in bottom gate and dual gate OTFT devices with on/off ratios in the range of 105 to 10 7. Additionally, due to its appropriate HOMO (5.29 eV) energy level and optimum optical band gap (1.50 eV), PDPP-TNT is a promising candidate for organic photovoltaic (OPV) applications. When this polymer semiconductor is used as a donor and PC71BM as an acceptor in OPV devices, high power conversion efficiencies (PCE) of 4.7% are obtained. Such high mobility values in OTFTs and high PCE in OPV make PDPP-TNT a very promising polymer semiconductor for a wide range of applications in organic electronics.
Resumo:
A novel solution processable donor-acceptor (D-A) based low band gap polymer semiconductor poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4- c]pyrrole-1,4-dione-alt-thienylenevinylene} (PDPPF-TVT), was designed and synthesized by a Pd-catalyzed Stille coupling route. An electron deficient furan based diketopyrrolopyrrole (DPP) block and electron rich thienylenevinylene (TVT) donor moiety were attached alternately in the polymer backbone. The polymer exhibited good solubility, film forming ability and thermal stability. The polymer exhibits wide absorption bands from 400 nm to 950 nm (UV-vis-NIR region) with absorption maximum centered at 782 nm in thin film. The optical band gap (Eoptg) calculated from the polymer film absorption onset is around 1.37 eV. The π-energy band level (ionization potential) calculated by photoelectron spectroscopy in air (PESA) for PDPPF-TVT is around 5.22 eV. AFM and TEM analyses of the polymer reveal nodular terrace morphology with optimized crystallinity after 200 °C thermal annealing. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The highest hole mobility of 0.13 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices with on/off ratios in the range of 10 6-10 7. This work reveals that the replacement of thiophene by furan in DPP copolymers exhibits such a high mobility, which makes DPP furan a promising block for making a wide range of promising polymer semiconductors for broad applications in organic electronics.
Resumo:
Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is one of the failure modes that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a new test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 38 tests were conducted in this research to investigate the web crippling behaviour and strength of channel beams under ETF and ITF cases. Unlipped channel sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the current design rules in AS/NZS 4600 and the AISI S100 Specification for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.
Resumo:
Cold-formed high strength steel members are increasingly used as primary load bearing components in low rise buildings. Lipped channel beam (LCB) is one of the most commonly used flexural members in these applications. In this research an experimental study was undertaken to investigate the shear behaviour and strengths of LCB sections. Simply supported test specimens of back to back LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. The ultimate shear capacity results obtained from the tests were compared with the predictions from the current design rules in Australian/NewZealand and American cold-formed steel design standards. This comparison showed that these shear design rules are very conservative as they did not include the post-buckling strength observed in the shear tests and the higher shear buckling coefficient due to the additional fixity along the web-flange juncture. Improved shear design equations are proposed in this paper by including the above beneficial effects. Suitable lower bound design rules were also developed under the direct strength method format. This paper presents the details of this experimental study and the results including the improved design rules for the shear capacity of LCBs. It also includes the details of tests of LCBs subject to combined shear and flange distortion, and combined bending and shear actions, and proposes suitable design rules to predict the capacities in these cases.
Resumo:
A vital element to improve outcomes for disadvantaged students is outstanding teachers. A reality, however, is that teacher graduates in the top quartile of academic scores are far less likely to accept positions in tough urban, regional, rural and remote schools. Further, because high poverty schools can be challenging environments, these teachers are retained for much shorter periods of time. In response to this challenge, the National Exceptional Teachers for Disadvantaged Schools program (NETDS) creates a pathway for the highest quality pre-service teachers to be fully prepared, professionally and personally, for roles within high poverty schools. The program identifies the highest-achieving mainstream preservice teachers in university programs across the country and offers them a specialised curriculum and supported practicum experience in a network of disadvantaged partner schools. By working closely with government, philanthropy and partner schools, the program also works to channel these exceptional pre-service teachers into employment in schools where they will have the greatest impact. Its initial results have been exceptional: over 90% of graduates are now employed as teachers in high poverty schools. This paper will discuss their research on how they are working to build the infrastructure and capacity for research on innovations that prepare teachers for 21st century schools in the Australian context.