185 resultados para fuzzy sample entropy
Resumo:
Police services in a number of Australian states and overseas jurisdictions have begun to implement or consider random road-side drug testing of drivers. This paper outlines research conducted to provide an estimate of the extent of drug driving in a sample of Queensland drivers in regional, rural and metropolitan areas. Oral fluid samples were collected from 2657 Queensland motorists and screened for illicit substances including cannabis (delta 9 tetrahydrocannibinol [THC]), amphetamines, ecstasy, and cocaine. Overall, 3.8% of the sample (n = 101) screened positive for at least one illicit substance, although multiple drugs were identified in a sample of 23 respondents. The most common drugs detected in oral fluid were ecstasy (n = 53), and cannabis (n = 46) followed by amphetamines (n = 23). A key finding was that cannabis was confirmed as the most common self-reported drug combined with driving and that individuals who tested positive to any drug through oral fluid analysis were also more likely to report the highest frequency of drug driving. Furthermore, a comparison between drug vs. drink driving detection rates for one region of the study, revealed a higher detection rate for drug driving (3.8%) vs. drink driving (0.8%). This research provides evidence that drug driving is relatively prevalent on Queensland roads, and may in fact be more common than drink driving. This paper will further outline the study findings’ and present possible directions for future drug driving research.
Resumo:
This program of research examines the experience of chronic pain in a community sample. While, it is clear that like patient samples, chronic pain in non-patient samples is also associated with psychological distress and physical disability, the experience of pain across the total spectrum of pain conditions (including acute and episodic pain conditions) and during the early course of chronic pain is less clear. Information about these aspects of the pain experience is important because effective early intervention for chronic pain relies on identification of people who are likely to progress to chronicity post-injury. A conceptual model of the transition from acute to chronic pain was proposed by Gatchel (1991a). In brief, Gatchel’s model describes three stages that individuals who have a serious pain experience move through, each with worsening psychological dysfunction and physical disability. The aims of this program of research were to describe the experience of pain in a community sample in order to obtain pain-specific data on the problem of pain in Queensland, and to explore the usefulness of Gatchel’s Model in a non-clinical sample. Additionally, five risk factors and six protective factors were proposed as possible extensions to Gatchel’s Model. To address these aims, a prospective longitudinal mixed-method research design was used. Quantitative data was collected in Phase 1 via a comprehensive postal questionnaire. Phase 2 consisted of a follow-up questionnaire 3 months post-baseline. Phase 3 consisted of semi-structured interviews with a subset of the original sample 12 months post follow-up, which used qualitative data to provide a further in-depth examination of the experience and process of chronic pain from respondents’ point of view. The results indicate chronic pain is associated with high levels of anxiety and depressive symptoms. However, the levels of disability reported by this Queensland sample were generally lower than those reported by clinical samples and consistent with disability data reported in a New South Wales population-based study. With regard to the second aim of this program of research, while some elements of the pain experience of this sample were consistent with that described by Gatchel’s Model, overall the model was not a good fit with the experience of this non-clinical sample. The findings indicate that passive coping strategies (minimising activity), catastrophising, self efficacy, optimism, social support, active strategies (use of distraction) and the belief that emotions affect pain may be important to consider in understanding the processes that underlie the transition to and continuation of chronic pain.
Resumo:
Retention rates and stress levels of beginning teachers are of concern. Well-planned induction programs can assist beginning teachers to make the transition successfully into the profession, which may increase retention rates. This qualitative, year-long study aims to explore and describe the induction experiences of eight beginning teachers as they negotiated their first year of teaching. Data gathered through interviews and emails indicated that these teachers required further development on: catering for individual differences, assessing in terms of outcomes, relating to parents, relating to the wider community, and understanding school policies; however, relating to students and understanding legal responsibilities and duty of care were not issues. At the conclusion of their first year only one beginning teacher was assisted by a mentor (veteran teacher) on whole-school programming, and planning for improving teaching with opportunities to visit other classrooms. This was also the only beginning teacher who received a reduced workload in order to meet with the mentor to discuss pedagogical developments. The inadequate support provided to beginning teachers in this study highlights the need for principals and school staff to reassess induction processes, which includes providing time, funding, mentoring support and clear guidelines for a quality induction program.
Resumo:
It has been proposed that body image disturbance is a form of cognitive bias wherein schemas for self-relevant information guide the selective processing of appearancerelated information in the environment. This threatening information receives disproportionately more attention and memory, as measured by an Emotional Stroop and incidental recall task. The aim of this thesis was to expand the literature on cognitive processing biases in non-clinical males and females by incorporating a number of significant methodological refinements. To achieve this aim, three phases of research were conducted. The initial two phases of research provided preliminary data to inform the development of the main study. Phase One was a qualitative exploration of body image concerns amongst males and females recruited through the general community and from a university. Seventeen participants (eight male; nine female) provided information on their body image and what factors they saw as positively and negatively impacting on their self evaluations. The importance of self esteem, mood, health and fitness, and recognition of the social ideal were identified as key themes. These themes were incorporated as psycho-social measures and Stroop word stimuli in subsequent phases of the research. Phase Two involved the selection and testing of stimuli to be used in the Emotional Stroop task. Six experimental categories of words were developed that reflected a broad range of health and body image concerns for males and females. These categories were high and low calorie food words, positive and negative appearance words, negative emotion words, and physical activity words. Phase Three addressed the central aim of the project by examining cognitive biases for body image information in empirically defined sub-groups. A National sample of males (N = 55) and females (N = 144), recruited from the general community and universities, completed an Emotional Stroop task, incidental memory test, and a collection of psycho-social questionnaires. Sub-groups of body image disturbance were sought using a cluster analysis, which identified three sub-groups in males (Normal, Dissatisfied, and Athletic) and four sub-groups in females (Normal, Health Conscious, Dissatisfied, and Symptomatic). No differences were noted between the groups in selective attention, although time taken to colour name the words was associated with some of the psycho-social variables. Memory biases found across the whole sample for negative emotion, low calorie food, and negative appearance words were interpreted as reflecting the current focus on health and stigma against being unattractive. Collectively these results have expanded our understanding of processing biases in the general community by demonstrating that the processing biases are found within non-clinical samples and that not all processing biases are associated with negative functionality
Resumo:
This paper proposes a novel relative entropy rate (RER) based approach for multiple HMM (MHMM) approximation of a class of discrete-time uncertain processes. Under different uncertainty assumptions, the model design problem is posed either as a min-max optimisation problem or stochastic minimisation problem on the RER between joint laws describing the state and output processes (rather than the more usual RER between output processes). A suitable filter is proposed for which performance results are established which bound conditional mean estimation performance and show that estimation performance improves as the RER is reduced. These filter consistency and convergence bounds are the first results characterising multiple HMM approximation performance and suggest that joint RER concepts provide a useful model selection criteria. The proposed model design process and MHMM filter are demonstrated on an important image processing dim-target detection problem.
Resumo:
Matching method of heavy truck-rear air suspensions is discussed, and a fuzzy control strategy which improves both ride comfort and road friendliness of truck by adjusting damping coefficients of the suspension system is found. In the first place, a Dongfeng EQ1141G7DJ heavy truck’s ten DOF whole vehicle-road model was set up based on Matlab/Simulink and vehicle dynamics. Then appropriate passive air suspensions were chosen to replace the original rear leaf springs of the truck according to truck-suspension matching criterions, consequently, the stiffness of front leaf springs were adjusted too. Then the semi-active fuzzy controllers were designed for further enhancement of the truck’s ride comfort and the road friendliness. After the application of semi-active fuzzy control strategy through simulation, is was indicated that both ride comfort and road friendliness could be enhanced effectively under various road conditions. The strategy proposed may provide theory basis for design and development of truck suspension system in China.
Resumo:
Postconcussion symptoms are relatively common in the acute recovery period following mild traumatic brain injury (MTBI). However, for a small subset of patients, self reported postconcussion symptoms continue long after injury. Many factors have been proposed to account for the presence of persistent postconcussion symptoms. The influence of personality traits has been proposed as one explanation. The purpose of this study was to examine the relation between postconcussion-like symptom reporting and personality traits in a sample of 96 healthy participants. Participants completed the British Columbia Postconcussion Symptom Inventory (BC-PSI) and the Millon Clinical Multiaxial Inventory III (MCMI-III). There was a strong positive relation between the majority of MCMI-III scales and postconcussion-like symptom reporting. Approximately half of the sample met the International Classification of Diseases-10 Criterion C symptoms for Postconcussional Syndrome (PCS). Compared with those participants who did not meet this criterion, the PCS group had significant elevations on the negativistic, depression, major depression, dysthymia, anxiety, dependent, sadistic, somatic, and borderline scales of the MCMI-III. These findings support the hypothesis that personality traits can play a contributing role in self reported postconcussion-like symptoms.
Resumo:
Background: While there has been substantial research examining the correlates of comorbid substance abuse in psychotic disorders, it has been difficult to tease apart the relative importance of individual variables. Multivariate analyses are required, in which the relative contributions of risk factors to specific forms of substance misuse are examined, while taking into account the effects of other important correlates. Methods: This study used multivariate correlates of several forms of comorbid substance misuse in a large epidemiological sample of 852 Australians with DSMIII- R-diagnosed psychoses. Results: Multiple substance use was common and equally prevalent in nonaffective and affective psychoses. The most consistent correlate across the substance use disorders was male sex. Younger age groups were more likely to report the use of illegal drugs, while alcohol misuse was not associated with age. Side effects secondary to medication were associated with the misuse of cannabis and multiple substances, but not alcohol. Lower educational attainment was associated with cannabis misuse but not other forms of substance abuse. Conclusion: The profile of substance misuse in psychosis shows clinical and demographic gradients that can inform treatment and preventive research.
Resumo:
With the widespread applications of electronic learning (e-Learning) technologies to education at all levels, increasing number of online educational resources and messages are generated from the corresponding e-Learning environments. Nevertheless, it is quite difficult, if not totally impossible, for instructors to read through and analyze the online messages to predict the progress of their students on the fly. The main contribution of this paper is the illustration of a novel concept map generation mechanism which is underpinned by a fuzzy domain ontology extraction algorithm. The proposed mechanism can automatically construct concept maps based on the messages posted to online discussion forums. By browsing the concept maps, instructors can quickly identify the progress of their students and adjust the pedagogical sequence on the fly. Our initial experimental results reveal that the accuracy and the quality of the automatically generated concept maps are promising. Our research work opens the door to the development and application of intelligent software tools to enhance e-Learning.
Resumo:
Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.
Resumo:
This paper investigates the robust H∞ control for Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. By employing a new and tighter integral inequality and constructing an appropriate type of Lyapunov functional, delay-dependent stability criteria are derived for the control problem. Because neither any model transformation nor free weighting matrices are employed in our theoretical derivation, the developed stability criteria significantly improve and simplify the existing stability conditions. Also, the maximum allowable upper delay bound and controller feedback gains can be obtained simultaneously from the developed approach by solving a constrained convex optimization problem. Numerical examples are given to demonstrate the effectiveness of the proposed methods.