113 resultados para fossil fuel substitution
Resumo:
There are many attractive alternatives to produce chemicals similar to those currently produced from fossil fuel resources. The most viable renewable resource of fixed carbon is biomass. This paper examines processing conditions for the production and recovery of furanics from bagasse as well as bagasse pulp. It is shown that bio-oil consisting mainly of furanics (~84% chloromethly furfural) may be obtained in yields of ~78% and ~87% by weight from bagasse and bagasse pulp respectively using a biphasic acid hydrolysis system. The biphasic system consists of an organic layer of dichloroethane and an aqueous phase of concentrated hydrochloric acid. Generally the lower the impurity content and the higher the cellulose content, the higher the furanics yield.
Resumo:
Declining fossil fuels reserves, a need for increased energy security and concerns over carbon emissions from fossil fuel use are the global drivers for alternative, renewable, biosources of fuels and chemicals. In the present study the identification of long chain (C29–C33) saturated hydrocarbons from Nicotiana glauca leaves is reported. The occurrence of these hydrocarbons was detected by gas chromatography–mass spectrometry (GC–MS) and identification confirmed by comparison of physico-chemical properties displayed by the authentic standards available. A simple, robust procedure was developed to enable the generation of an extract containing a high percentage of hydrocarbons (6.3% by weight of dried leaf material) higher than previous reports in other higher plant species consequently, it is concluded that N. glauca could be a crop of greater importance than previously recognised for biofuel production. The plant can be grown on marginal lands, negating the need to compete with food crops or farmland, and the hydrocarbon extract can be produced in a non-invasive manner, leaving remaining biomass intact for bioethanol production and the generation of valuable co-products.
Resumo:
The concept of ‘sustainability’ has been pushed to the forefront of policy-making and politics as the world wakes up to the impacts of climate change and the effects of the rapid urbanisation and modern urban lifestyles (Yigitcanlar and Teriman 2014). Climate change and fossil fuel-based energy policy have emerged as the biggest challenges for our planet, threatening both built and natural systems with long-term consequences. However, the threats are not limited to the impacts of climate change and unsustainable energy system only – e.g., impacts of rapid urbanisation, socioeconomic crises and governance hiccups are just to name a few (Yigitcanlar 2010a). Along with these challenges, successfully coping with the enormous transformations that our cities, societies and the environment have been going through during the last few decades, and their...
Resumo:
This study demonstrates a novel method for testing the hypothesis that variations in primary and secondary particle number concentration (PNC) in urban air are related to residual fuel oil combustion at a coastal port lying 30 km upwind, by examining the correlation between PNC and airborne particle composition signatures chosen for their sensitivity to the elemental contaminants present in residual fuel oil. Residual fuel oil combustion indicators were chosen by comparing the sensitivity of a range of concentration ratios to airborne emissions originating from the port. The most responsive were combinations of vanadium and sulfur concentration ([S], [V]) expressed as ratios with respect to black carbon concentration ([BC]). These correlated significantly with ship activity at the port and with the fraction of time during which the wind blew from the port. The average [V] when the wind was predominantly from the port was 0.52 ng.m-3 (87%) higher than the average for all wind directions and 0.83 ng.m-3 (280%) higher than that for the lowest vanadium yielding wind direction considered to approximate the natural background. Shipping was found to be the main source of V impacting urban air quality in Brisbane. However, contrary to the stated hypothesis, increases in PNC related measures did not correlate with ship emission indicators or ship traffic. Hence at this site ship emissions were not found to be a major contributor to PNC compared to other fossil fuel combustion sources such as road traffic, airport and refinery emissions.
Resumo:
This study investigates the price linkage among the US major energy sources, considering structural breaks in time series, to provide information for diversifying the US energy sources. We find that only a weak linkage sustains among crude oil, gasoline, heating oil, coal, natural gas, uranium and ethanol futures prices. This implies that the US major energy source markets are not integrated as one primary energy market. Our tests also reveal that uranium and ethanol futures prices have very weak linkages with other major energy source prices. This indicates that the US energy market is still at a stage where none of the probable alternative energy source markets are playing the role as substitute or complement markets for the fossil fuel energy markets.
Estimating the burden of disease attributable to urban outdoor air pollution in South Africa in 2000
Resumo:
Objectives To quantify the mortality burden attributed to urban outdoor air pollution in South Africa in 2000. Design The study followed comparative risk assessment (CRA) methodology developed by the World Heath Organization (WHO). In most urban areas, annual mean concentrations of particulate matter (PM) with diameters less than 10 μum (PM10) from monitoring network data and PM with diameters less than 2.5 μm (PM2.5) derived using a ratio method were weighted according to population size. PM10 and PM2.5 data from air-quality assessment studies in areas not covered by the network were also included. Population-attributable fractions calculated using risk coefficients presented in the WHO study were weighted by the proportion of the total population (33%) in urban environments, and applied to revised estimates of deaths and years of life lost (YLLs) for South Africa in 2000. Setting South Africa. Subjects Children under 5 years and adults 30 years and older. Outcome measures Mortality and YLLs from lung cancer and cardiopulmonary disease in adults (30 years and older), and from acute respiratory infections (ARIs) in children aged 0 - 4 years. Results Outdoor air pollution in urban areas in South Africa was estimated to cause 3.7% of the national mortality from cardiopulmonary disease and 5.1% of mortality attributable to cancers of the trachea, bronchus and lung in adults aged 30 years and older, and 1.1% of mortality from ARIs in children under 5 years of age. This amounts to 4 637 or 0.9% (95% uncertainty interval 0.3 - 1.5%) of all deaths and about 42 000 YLLs, or 0.4% (95% uncertainty interval 0.1 - 0.7%) of all YLLs in persons in South Africa in 2000. Conclusion Urban air pollution has under-recognised public health impacts in South Africa. Fossil fuel combustion emissions and traffic-related air pollution remain key targets for public health in South Africa.
Resumo:
As fossil fuel prices increase and environmental concerns gain prominence, the development of alternative fuels from biomass has become more important. Biodiesel produced from microalgae is becoming an attractive alternative to share the role of petroleum. Currently it appears that the production of microalgal biodiesel is not economically viable in current environment because it costs more than conventional fuels. Therefore, a new concept is introduced in this article as an option to reduce the total production cost of microalgal biodiesel. The integration of biodiesel production system with methane production via anaerobic digestion is proved in improving the economics and sustainability of overall biodiesel stages. Anaerobic digestion of microalgae produces methane and further be converted to generate electricity. The generated electricity can surrogate the consumption of energy that require in microalgal cultivation, dewatering, extraction and transesterification process. From theoretical calculations, the electricity generated from methane is able to power all of the biodiesel production stages and will substantially reduce the cost of biodiesel production (33% reduction). The carbon emissions of biodiesel production systems are also reduced by approximately 75% when utilizing biogas electricity compared to when the electricity is otherwise purchased from the Victorian grid. The overall findings from this study indicate that the approach of digesting microalgal waste to produce biogas will make the production of biodiesel from algae more viable by reducing the overall cost of production per unit of biodiesel and hence enable biodiesel to be more competitive with existing fuels.
Resumo:
In order to protect our planet and ourselves from the adverse effects of excessive CO2 emissions and to prevent an imminent non-renewable fossil fuel shortage and energy crisis, there is a need to transform our current ‘fossil fuel dependent’ energy systems to new, clean, renewable energy sources. The world has recognized hydrogen as an energy carrier that complies with all the environmental quality and energy security, demands. This research aimed at producing hydrogen through anaerobic fermentation, using food waste as the substrate. Four food waste substrates were used: Rice, fish, vegetable and their mixture. Bio-hydrogen production was performed in lab scale reactors, using 250 mL serum bottles. The food waste was first mixed with the anaerobic sewage sludge and incubated at 37°C for 31 days (acclimatization). The anaerobic sewage sludge was then heat treated at 80°C for 15 min. The experiment was conducted at an initial pH of 5.5 and temperatures of 27, 35 and 55°C. The maximum cumulative hydrogen produced by rice, fish, vegetable and mixed food waste substrates were highest at 37°C (Rice =26.97±0.76 mL, fish = 89.70±1.25 mL, vegetable = 42.00±1.76 mL, mixed = 108.90±1.42 mL). A comparative study of acclimatized (the different food waste substrates were mixed with anaerobic sewage sludge and incubated at 37°C for 31days) and non-acclimatized food waste substrate (food waste that was not incubated with anaerobic sewage sludge) showed that acclimatized food waste substrate enhanced bio-hydrogen production by 90 - 100%.
Resumo:
This is a musical theatre production with an environmental message addressing a Queensland, Australia tussle between the development of the Galilee Coal Basin and the potential threat to the health of the Great Barrier Reef along the Queensland coast. The drama is enacted by characters representing "goodies" and "baddies" and includes epic poetry, dance, orchestra and drama. The whole performance is enacted in the midst of a post graduate student art exhibition with a coral and coal theme.
Resumo:
Engaging in a close analysis of legal and political discourse, this chapter considers conflicts over intellectual property and climate change in three key arenas: climate law; trade law; and intellectual property law. In this chapter, it is argued that there is a need to overcome the political stalemates and deadlocks over intellectual property and climate change. It is essential that intellectual property law engage in a substantive fashion with the matrix of issues surrounding fossil fuels, clean technologies, and climate change at an international level. First, this chapter examines the debate over intellectual property and climate change under the auspices of the United Nations Framework Convention on Climate Change 1992, and the establishment of the UNFCCC Climate Technology Centre and Network. It recommends that the technology mechanism should address and deal with matters of intellectual property management and policy. Second, the piece examines the discussion of global issues in the World Intellectual Property Organization, WIPO GREEN. It supports the proposal for a Global Green Patent Highway to allow for the fast-tracking of intellectual property applications in respect of green technologies. Third, the chapter investigates the dispute in the TRIPS Council at the World Trade Organization over intellectual property, climate change, and development. This section focuses upon the TRIPS Agreement 1994. This chapter calls for a Joint Declaration on Intellectual Property and Climate Change from the UNFCCC, WIPO, and the WTO. The paper concludes that intellectual property should be reformed as part of a larger effort to promote climate justice. Rather than adopt a fragmented, piecemeal approach in various international institutions, there is a need for a co-ordinated and cohesive response to intellectual property in an age of runaway, global climate change. Patent law should be fossil fuel free. Intellectual property should encourage research, development, and diffusion of renewable energy and clean technologies. It is submitted that intellectual property law reform should promote climate justice in line with Mary Robinson’s Declaration on Climate Justice 2013.
Resumo:
On the Global Divestment Day on the 13–14 February 2015, doctors and health professionals were at the forefront of the campaign for fossil fuel divestment. In Australia, medical professionals have pushed for fossil fuel divestment, climate action, and re-investment in renewable energy. Professor Fiona Stanley has been a key leader in the debate over public health and climate change, delivering a Monster Climate Petition to the Australian Parliament. In the United Kingdom, the British Medical Association has led the way, with its decision to divest itself of investments in coal, oil, and gas. The landmark report Unhealthy Investments has provided further impetus for the United Kingdom health and medical community to engage in fossil fuel divestment. In the United States and Canada, there is a burgeoning fossil fuel divestment movement. At an international level, there has been a growing impetus for climate action in order to address public health risks associated with global warming.
Resumo:
Road agencies face growing pressure to respond to a range of issues associated with climate change and the reliance on fossil fuels. A key part of this response will be to reduce the dependency on fossil fuel based energy (and the associated greenhouse gas emissions) of transport, both vehicles and infrastructure. This paper presents findings of investigations into three key areas of innovative technologies and processes, namely the inclusion of onsite renewable energy generation technologies as part of road and transport infrastructure, the potential for automated motorways to reduce traffic fuel consumption (referred to as 'Smart Roads'), and the reduction of energy demand from route and signal lighting. The paper then concludes with the recommendation for the engineering profession to embrace sustainability performance assessment and rating tools as the basis for enhancing and communicating the contribution to Australia's response to climate change. Such tools provide a rigorous structure that can standardise approaches to key issues across entire sectors and provide clarity on the evidence required to demonstrate leading performance. The paper has been developed with funding and support provided by Australia's Sustainable Built Environment National Research Centre (SBEnrc), working with partners including Main Roads Western Australia, NSW Roads and Maritime Services, Queensland Department of Transport and Main Roads, John Holland Group, the Infrastructure Sustainability Council of Australia, Roads Australia, and the CRC for Low Carbon Living.
Resumo:
The objective of this study was to examine the hydrothermal liquefaction of sugarcane bagasse using ethanol and black liquor (BL) in a pilot scale. Combinations of co-solvents (ethanol/ water, ethanol/BL) were studied at various concentrations and reaction conditions. The maximum oil yield of 61% was achieved with a reaction temperature of 300 °C for 30 min and using pure BL as a solvent, while the highest higher heating value (HHV) was obtained from a 50:50 ethanol-BL mixture. The oils contained alcohols, esters, phenolic compounds, aromatics, and heterocyclics. The O/C and H/C ratios of the oil were comparable with traditional biodiesel and commercial diesel. Although this study showed there are some improvements to be made to improve the chemical composition, the approach has potential for large-scale production of a substitute for fossil-fuel-based diesel.
Resumo:
The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future.
Resumo:
This paper investigates the short-run effects of economic growth on carbon dioxide emissions from the combustion of fossil fuels and the manufacture of cement for 189 countries over the period 1961-2010. Contrary to what has previously been reported, we conclude that there is no strong evidence that the emissions-income elasticity is larger during individual years of economic expansion as compared to recession. Significant evidence of asymmetry emerges when effects over longer periods are considered. We find that economic growth tends to increase emissions not only in the same year, but also in subsequent years. Delayed effects - especially noticeable in the road transport sector - mean that emissions tend to grow more quickly after booms and more slowly after recessions. Emissions are more sensitive to fluctuations in industrial value added than agricultural value added, with services being an intermediate case. On the expenditure side, growth in consumption and growth in investment have similar implications for national emissions. External shocks have a relatively large emissions impact, and the short-run emissions-income elasticity does not appear to decline as incomes increase. Economic growth and emissions have been more tightly linked in fossil-fuel rich countries.