20 resultados para folded cascode


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Double-pulse tests are commonly used as a method for assessing the switching performance of power semiconductor switches in a clamped inductive switching application. Data generated from these tests are typically in the form of sampled waveform data captured using an oscilloscope. In cases where it is of interest to explore a multi-dimensional parameter space and corresponding result space it is necessary to reduce the data into key performance metrics via feature extraction. This paper presents techniques for the extraction of switching performance metrics from sampled double-pulse waveform data. The reported techniques are applied to experimental data from characterisation of a cascode gate drive circuit applied to power MOSFETs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove the existence of novel, shock-fronted travelling wave solutions to a model of wound healing angiogenesis studied in Pettet et al (2000 IMA J. Math. App. Med. 17 395–413) assuming two conjectures hold. In the previous work, the authors showed that for certain parameter values, a heteroclinic orbit in the phase plane representing a smooth travelling wave solution exists. However, upon varying one of the parameters, the heteroclinic orbit was destroyed, or rather cut-off, by a wall of singularities in the phase plane. As a result, they concluded that under this parameter regime no travelling wave solutions existed. Using techniques from geometric singular perturbation theory and canard theory, we show that a travelling wave solution actually still exists for this parameter regime. We construct a heteroclinic orbit passing through the wall of singularities via a folded saddle canard point onto a repelling slow manifold. The orbit leaves this manifold via the fast dynamics and lands on the attracting slow manifold, finally connecting to its end state. This new travelling wave is no longer smooth but exhibits a sharp front or shock. Finally, we identify regions in parameter space where we expect that similar solutions exist. Moreover, we discuss the possibility of more exotic solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Premature aging syndromes recapitulate many aspects of natural aging and provide an insight into this phenomenon at a molecular and cellular level. The progeria syndromes appear to cause rapid aging through disruption of normal nuclear structure. Recently, a coding mutation (c.34G > A [p.A12T]) in the Barrier to Autointegration Factor 1 (BANF1) gene was identified as the genetic basis of Néstor-Guillermo Progeria syndrome (NGPS). This mutation was described to cause instability in the BANF1 protein, causing a disruption of the nuclear envelope structure. Results Here we demonstrate that the BANF1 A12T protein is indeed correctly folded, stable and that the observed phenotype, is likely due to the disruption of the DNA binding surface of the A12T mutant. We demonstrate, using biochemical assays, that the BANF1 A12T protein is impaired in its ability to bind DNA while its interaction with nuclear envelope proteins is unperturbed. Consistent with this, we demonstrate that ectopic expression of the mutant protein induces the NGPS cellular phenotype, while the protein localizes normally to the nuclear envelope. Conclusions Our study clarifies the role of the A12T mutation in NGPS patients, which will be of importance for understanding the development of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Similar to most other creative industries, the evolution of the music industry is heavily shaped by media technologies. This was equally true in 1999, when the global recorded music industry had experienced two decades of continuous growth largely driven by the rapid transition from vinyl records to Compact Discs. The transition encouraged avid music listeners to purchase much of their music collections all over again in order to listen to their favourite music with ‘digital sound’. As a consequence of this successful product innovation, recorded music sales (unit measure) more than doubled between the early 1980s and the end of the 1990s. It was with this backdrop that the first peer-to-peer file sharing service was developed and released to the mainstream music market in 1999 by the college student Shawn Fanning. The service was named Napster and it marks the beginning of an era that is now a classic example of how an innovation is able to disrupt an entire industry and make large swathes of existing industry competences obsolete. File sharing services such as Napster, followed by a range of similar services in its path, reduced physical unit sales in the music industry to levels that had not been seen since the 1970s. The severe impact of the internet on physical sales shocked many music industry executives who spent much of the 2000s vigorously trying to reverse the decline and make the disruptive technologies go away. At the end, they learned that their efforts were to no avail and the impact on the music industry proved to be transformative, irreversible and, to many music industry professionals, also devastating. Thousands of people lost their livelihood, large and small music companies have folded or been forced into mergers or acquisitions. But as always during periods of disruption, the past 15 years have also been very innovative, spurring a plethora of new music business models. These new business models have mainly emerged outside the music industry and the innovators have been often been required to be both persuasive and persistent in order to get acceptance from the risk-averse and cash-poor music industry establishment. Apple was one such change agent that in 2003 was the first company to open up a functioning and legal market for online music. iTunes Music Store was the first online retail outlet that was able to offer the music catalogues from all the major music companies; it used an entirely novel pricing model, and it allowed consumers to de-bundle the music album and only buy the songs that they actually liked. Songs had previously been bundled by physical necessity as discs or cassettes, but with iTunes Music Store, the institutionalized album bundle slowly started to fall apart. The consequences had an immediate impact on music retailing and within just a few years, many brick and mortar record stores were forced out of business in markets across the world. The transformation also had disruptive consequences beyond music retailing and redefined music companies’ organizational structures, work processes and routines, as well as professional roles. iTunes Music Store in one sense was a disruptive innovation, but it was at the same time relatively incremental, since the major labels’ positions and power structures remained largely unscathed. The rights holders still controlled their intellectual properties and the structures that guided the royalties paid per song that was sold were predictable, transparent and in line with established music industry practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent years have witnessed a large volume of works on the modification of graphene; however, an understanding of the associated morphology or mechanical properties changes is still lacking, which is vital for its engineering implementation. By taking the C4F fluorination as an example, we find that the morphology of both graphene sheet (GS) and graphene nanoribbon (GNR) can be effectively tailored by fluorination patterning via molecular dynamics simulations. The fluorine atom produces out-of-plane forces which trigger several intriguing morphology changes to monolayer graphene, including zigzag, folded, ruffle, nanoscroll, and chain structures. Notably, for multilayer GNR, the delamination and climbing phenomena of the surface layer are observed. Further studies show that the fluorination pattern can also be utilized to modulate the mechanical properties of graphene, e.g., about 40% increase of the effective yield strain is observed for the examined GNR with fluorination patterns. This study not only demonstrates the significant impacts on the morphology of graphene from fluorination but also suggests an effective avenue to tailor the morphology and thus mechanical properties of GS and GNR.