30 resultados para flowering phenology
Resumo:
Increased or fluctuating resources may facilitate opportunities for invasive exotic plants to dominate. This hypothesis does not, however, explain how invasive species succeed in regions characterized by low resource conditions or how these species persist in the lulls between high resource periods. We compare the growth of three co-occurring C4 perennial bunchgrasses under low resource conditions: an exotic grass, Eragrostis curvula (African lovegrass) and two native grasses, Themeda triandra and Eragrostis sororia. We grew each species over 12 weeks under low nutrients and three low water regimes differentiated by timing: continuous, pulsed, and mixed treatments (switched from continuous to pulsed and back to continuous). Over time, we measured germination rates, time to germination (first and second generations), height, root biomass, vegetative biomass, and reproductive biomass. Contrary to our expectations that the pulsed watering regime would favor the invader, water-supply treatments had little significant effect on plant growth. We did find inherent advantages in a suite of early colonization traits that likely favor African lovegrass over the natives including faster germination speed, earlier flowering times, faster growth rates and from 2 weeks onward it was taller. African lovegrass also showed similar growth allocation strategies to the native grasses in terms of biomass levels belowground, but produced more vegetative biomass than kangaroo grass. Overall our results suggest that even under low resource conditions invasive plant species like African lovegrass can grow similarly to native grasses, and for some key colonization traits, like germination rate, perform better than natives.
Resumo:
Unlike most genera in the early-divergent angiosperm family Annonaceae, Pseuduvaria exhibits a diversity of floral sex expression. Most species are structurally andromonoecious (or possibly androdioecious), although the hermaphroditic flowers have been inferred to be functionally pistillate, with sterile staminodes. Pseuduvaria presents an ideal model for investigating the evolution of floral sex in early-divergent angiosperms, although detailed empirical studies are currently lacking. The phenology and pollination ecology of the Australian endemic species Pseuduvaria mulgraveana are studied in detail, including evaluations of floral scent chemistry, pollen viability, and floral visitors. Results showed that the flowers are pollinated by small diurnal nitidulid beetles and are protogynous. Pollen from both hermaphroditic and staminate flowers are shown to be equally viable. The structurally hermaphroditic flowers are nevertheless functionally pistillate as anther dehiscence is delayed until after petal abscission and hence after the departure of pollinators. This mechanism to achieve functional unisexuality of flowers has not previously been reported in angiosperms. It is known that protogyny is widespread amongst early-divergent angiosperms, including the Annonaceae, and is effective in preventing autogamy. Delayed anther dehiscence represents a further elaboration of this, and is effective in preventing geitonogamy since very few sexually mature flowers occur simultaneously in an individual. We highlight the necessity for field-based empirical interpretations of functional floral sex expression prior to evaluations of evolutionary processes.
Resumo:
Abstract. 1. Learning may enable insects to obtain nectar from flowers more efficiently. Learning in nectar foraging has been shown primarily in studies of bees and butterflies. Here, learning is demonstrated in the nectar foraging behaviour of a noctuid moth, Helicoverpa armigera. 2. The present studies show that: (1) previous experience with a flowering host species increases the probability of that species being selected for nectar foraging, and (2) previous experience of a particular flower type (food source at bottom or top of the corolla tube) increases the likelihood of the food source being found when that flower type is being searched. 3. The implications of these findings for understanding the pattern of oviposition observed in wild populations of this important pest species are discussed.
Resumo:
In plants, double-stranded RNA (dsRNA) is an effective trigger of RNA silencing, and several classes of endogenous small RNA (sRNA), processed from dsRNA substrates by DICER-like (DCL) endonucleases, are essential in controlling gene expression. One such sRNA class, the microRNAs (miRNAs) control the expression of closely related genes to regulate all aspects of plant development, including the determination of leaf shape, leaf polarity, flowering time, and floral identity. A single miRNA sRNA silencing signal is processed from a long precursor transcript of nonprotein-coding RNA, termed the primary miRNA (pri-miRNA). A region of the pri-miRNA is partially self-complementary allowing the transcript to fold back onto itself to form a stem-loop structure of imperfectly dsRNA. Artificial miRNA (amiRNA) technology uses endogenous pri-miRNAs, in which the miRNA and miRNA*(passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/ amiRNA*sequences that direct highly efficient RNA silencing of the targeted gene. Here, we describe the rules for amiRNA design, as well as outline the PCR and bacterial cloning procedures involved in the construction of an amiRNA plant expression vector to control target gene expression in Arabidopsis thaliana. © 2014 Springer Science+Business Media New York.
Resumo:
A major challenge in the post-genome era of plant biology is to determine the functions of all genes in the plant genome. A straightforward approach to this problem is to reduce or knockout expression of a gene with the hope of seeing a phenotype that is suggestive of its function. Insertional mutagenesis is a useful tool for this type of study but is limited by gene redundancy, lethal knockouts, non-tagged mutants, and the inability to target the inserted element to a specific gene. The efficacy of gene silencing in plants using inverted-repeat transgene constructs that encode a hairpin RNA (hpRNA) has been demonstrated by a number of groups, and has several advantages over insertional mutagenesis. In this paper we describe two improved pHellsgate vectors that facilitate rapid generation of hpRNA-encoding constructs, pHellsgate 4 allows the production of an hpRNA construct in a single step from a single polymerase chain reaction product, while pHellsgate 8 requires a two-step process via an intermediate vector. We show that these vectors are effective at silencing three endogenous genes in Arabidopsis, FLOWERING LOCUS C, PHYTOENE DESATURASE and ETHYLENE INSENSITIVE 2. We also show that a construct of sequences from two genes silences both genes.
Resumo:
The basic reproduction number of a pathogen, R 0, determines whether a pathogen will spread (R0>1R 0>1), when introduced into a fully susceptible population or fade out (R0<1R 0<1), because infected hosts do not, on average, replace themselves. In this paper we develop a simple mechanistic model for the basic reproduction number for a group of tick-borne pathogens that wholly, or almost wholly, depend on horizontal transmission to and from vertebrate hosts. This group includes the causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of human babesiosis, Babesia microti, for which transmission between co-feeding ticks and vertical transmission from adult female ticks are both negligible. The model has only 19 parameters, all of which have a clear biological interpretation and can be estimated from laboratory or field data. The model takes into account the transmission efficiency from the vertebrate host as a function of the days since infection, in part because of the potential for this dynamic to interact with tick phenology, which is also included in the model. This sets the model apart from previous, similar models for R0 for tick-borne pathogens. We then define parameter ranges for the 19 parameters using estimates from the literature, as well as laboratory and field data, and perform a global sensitivity analysis of the model. This enables us to rank the importance of the parameters in terms of their contribution to the observed variation in R0. We conclude that the transmission efficiency from the vertebrate host to Ixodes scapularis ticks, the survival rate of Ixodes scapularis from fed larva to feeding nymph, and the fraction of nymphs finding a competent host, are the most influential factors for R0. This contrasts with other vector borne pathogens where it is usually the abundance of the vector or host, or the vector-to-host ratio, that determine conditions for emergence. These results are a step towards a better understanding of the geographical expansion of currently emerging horizontally transmitted tick-borne pathogens such as Babesia microti, as well as providing a firmer scientific basis for targeted use of acaricide or the application of wildlife vaccines that are currently in development.
Resumo:
‘Dark Cartographies’ is a slowly evolving meditation upon seasonal change, life after light and the occluding shadows of human influence. Through creating experiences of the many ‘times of a night’ the work allows participants to experience deep engagement with rich spectras of hidden place and sound. By amplifying and shining light upon a myriad of lives lived in blackness, ‘Dark Cartographies’ tempts us to re-understand seasonal change as actively-embodied temporality, inflected by our climate-changing disturbances. ‘Dark Cartographies’ uses custom interactive systems, illusionary techniques and real time spatial audio that draw upon a rich array of media, including seasonal, nocturnal field recordings sourced in the Far North Queensland region and detailed observations of foliage & flowering phases. By drawing inspiration from the subtle transitions between what Europeans named ‘Summer’ and ‘Autumn’, and by including the body and its temporal disturbances within the work, ‘Dark Cartographies’ creates compellingly immersive environments that wrap us in atmospheres beyond sight and hearing. ‘Dark Cartographies’ is a dynamic new installation directed & choreographed by environmental cycles; alluding to a new framework for making works that we call ‘Seasonal’. This powerful, responsive & experiential work draws attention to that which will disappear when biodiverse worlds have descended into an era of permanent darkness – an ‘extinction of human experience’. By tapping into the deeply interlocking seasonal cycles of environments that are themselves intimately linked with social, geographical & political concerns, participating audiences are therefore challenged to see the night, their locality & ecologies in new ways through extending their personal limits of perception, imagery & comprehension.
Resumo:
In Arabidopsis, the identity of perianth and reproductive organs are specified by antagonistic action of two floral homeotic genes, APETALA2 (AP2) and AGAMOUS (AG). AP2 is also negatively regulated by an evolutionary conserved interaction with a microRNA, miR172, and has additional roles in general plant development. A kiwifruit gene with high levels of homology to AP2 and AP2-like genes from other plant species was identified. The transcript was abundant in the kiwifruit flower, particularly petal, suggesting a role in floral organ identity. Splice variants were identified, all containing both AP2 domains, including a variant that potentially produces a shorter transcript without the miRNA172 targeting site. Increased AP2 transcript accumulation was detected in the aberrant flowers of the mutant 'Pukekohe dwarf' with multiple perianth whorls and extended petaloid features. In contrast to normal kiwifruit flowers, the aberrant flowers failed to accumulate miR172 in the developing whorls, although accumulation was detected at the base of the flower. An additional role during dormancy in kiwifruit was proposed based on AP2 transcript accumulation in axillary buds before and after budbreak.
Resumo:
Petunia plants that exhibit a white-flowering phenotype as a consequence of chalcone synthase transgene-induced silencing occasionally give rise to revertant branches that produce flowers with wild-type pigmentation. Transcription run-on assays confirmed that the production of white flowers is caused by post-transcriptional gene silencing (PTGS), and indicated that transgene transcription is repressed in the revertant plants, providing evidence that induction of PTGS depends on the transcription rate. Transcriptional repression of the transgene was associated with cytosine methylation at CpG, CpNpG and CpNpN sites, and the expression was restored by treatment with either 5-azacytidine or trichostatin A. These results demonstrate that epigenetic changes occurred in the PTGS line, and these changes interfere with the initiation of transgene transcription, leading to a reversion of the PTGS phenotype.
Resumo:
The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria Ã- ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×-39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted.
Resumo:
A study was conducted during 1997-99 at 2 sites in Sri Lanka (Rambukkana and Kurunegala) to investigate the responses of Swietenia macrophylla seedlings to wide, moderate and narrow openings of high to low shade conditions in a mature mixed mahogany plantations. Survival, stem growth and shoot phenology of seedlings were recorded monthly. Seedling survival a year after planting showed high mortality under high shaded gap (3-8% photosynthetically active radiation (PAR)). At 51 weeks after planting, final stem height and root collar diameter were highly significant under low shaded gaps. Increased number of shoots and shoot lenghts were observed under low shade (50-78% PAR). Increased flushing was seen in all shade regimes during the rainy period. This study illustrates that low shaded gap openings favour seeding survival, stem and shoot growth, and number of shoots. On the contrary, high shaded gaps reduce the growth of seedlings and therefore may be less attractive to shoot borers.
Resumo:
An evolving meditation upon the complex, periodic processes that mark Australia’s seasonality, and our increasing ability to disturb them. By amplifying and shining light upon a myriad of mysterious lives lived in blackness, the work presents a sensuous, deep engagement with the rich, irregular spectras of seasonal forms: whilst hinting at a far less comforting background increasingly framed by anthropogenic climate change. ’Temporal’ uses custom interactive systems, illusionary techniques and real time spatial audio processes that draw upon a rich array of media, including seasonal, nocturnal field recordings sourced in the Bundaberg region and detailed observations of foliage & flowering phases from that region. By drawing inspiration from the subtle transitions between what Europeans once named ‘Summer’ and ‘Autumn’ and the multiple seasons recognised by other cultures, whilst also including bodily disturbances within the work, ’Temporal’ creates a compellingly immersive environment that wraps audiences in luscious yet ominous atmospheres beyond sight and hearing. This work completes a two year long project of dynamic mediated installations that have been presented in Sydney, Beijing, Cairns and Bundanon, that have each been somehow choreographed by environmental cycles; alluding to a new framework for making works that we named ‘Seasonal’. These powerful, responsive & experiential works each draw attention to that which will disappear when biodiverse worlds have descended into an era of permanent darkness – an ‘extinction of human experience’. By tapping into the deeply interlocking seasonal cycles of environments that are themselves intimately linked with social, geographical & political concerns, participating audiences are therefore challenged to see the night, their locality & ecologies in new ways through extending their personal limits of perception, imagery & comprehension.
Resumo:
Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included “marrying” ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.
Resumo:
Although grass pollen is widely regarded as the major outdoor aeroallergen source in Australia and New Zealand (NZ), no assemblage of airborne pollen data for the region has been previously compiled. Grass pollen count data collected at 14 urban sites in Australia and NZ over periods ranging from 1 to 17 years were acquired, assembled and compared, revealing considerable spatiotemporal variability. Although direct comparison between these data is problematic due to methodological differences between monitoring sites, the following patterns are apparent. Grass pollen seasons tended to have more than one peak from tropics to latitudes of 37°S and single peaks at sites south of this latitude. A longer grass pollen season was therefore found at sites below 37°S, driven by later seasonal end dates for grass growth and flowering. Daily pollen counts increased with latitude; subtropical regions had seasons of both high intensity and long duration. At higher latitude sites, the single springtime grass pollen peak is potentially due to a cooler growing season and a predominance of pollen from C
Resumo:
The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of scarabaeine dung beetles and provide examples.