65 resultados para fine partition
Resumo:
The Giant Long-Armed Prawn, Macrobrachium lar is a freshwater species native to the Indo-Pacific. M. lar has a long-lived, passive, pelagic marine larval stage where larvae need to colonise freshwater within three months to complete their development. Dispersal is likely to be influenced by the extensive distances larvae must transit between small oceanic islands to find suitable freshwater habitat, and by prevailing east to west wind and ocean currents in the southern Pacific Ocean. Thus, both intrinsic and extrinsic factors are likely to influence wild population structure in this species. The present study sought to define the contemporary broad and fine-scale population genetic structure of Macrobrachium lar in the south-western Pacific Ocean. Three polymorphic microsatellite loci were used to assess patterns of genetic variation within and among 19 wild adult sample sites. Statistical procedures that partition variation implied that at both spatial scales, essentially all variation was present within sample sites and differentiation among sites was low. Any differentiation observed also was not correlated with geographical distance. Statistical approaches that measure genetic distance, at the broad-scale, showed that all south-western Pacific Islands were essentially homogeneous, with the exception of a well supported divergent Cook Islands group. These findings are likely the result of some combination of factors that may include the potential for allelic homoplasy, through to the effects of sampling regime. Based on the findings, there is most likely a divergent M. lar Cook Islands clade in the south-western Pacific Ocean, resulting from prevailing ocean currents. Confirmation of this pattern will require a more detailed analysis of nDNA variation using a larger number of loci and, where possible, use of larger population sizes.
Resumo:
Partition of heavy metals between particulate and dissolve fraction of stormwater primarily depends on the adsorption characteristics of solids particles. Moreover, the bioavailability of heavy metals is also influenced by the adsorption behaviour of solids. However, due to the lack of fundamental knowledge in relation to the heavy metals adsorption processes of road deposited solids, the effectiveness of stormwater management strategies can be limited. The research study focused on the investigation of the physical and chemical parameters of solids on urban road surfaces and, more specifically, on heavy metal adsorption to solids. Due to the complex nature of heavy metal interaction with solids, a substantial database was generated through a series of field investigations and laboratory experiments. The study sites for the build-up pollutant sample collection were selected from four urbanised suburbs located in a major river catchment. Sixteen road sites were selected from these suburbs and represented typical industrial, commercial and residential land uses. Build-up pollutants were collected using a wet and dry vacuum collection technique which was specially designed to improve fine particle collection. Roadside soil samples were also collected from each suburb for comparison with the road surface solids. The collected build-up solids samples were separated into four particle size ranges and tested for a range of physical and chemical parameters. The solids build-up on road surfaces contained a high fraction (70%) of particles smaller than 150ìm, which are favourable for heavy metal adsorption. These solids particles predominantly consist of soil derived minerals which included quartz, albite, microcline, muscovite and chlorite. Additionally, a high percentage of amorphous content was also identified in road deposited solids. In comparing the mineralogical data of surrounding soil and road deposited solids, it was found that about 30% of the solids consisted of particles generated from traffic related activities on road surfaces. Significant difference in mineralogical composition was noted in different particle sizes of build-up solids. Fine solids particles (<150ìm) consisted of a clayey matrix and high amorphous content (in the region of 40%) while coarse particles (>150ìm) consisted of a sandy matrix at all study sites, with about 60% quartz content. Due to these differences in mineralogical components, particles larger than and smaller than 150ìm had significant differences in their specific surface area (SSA) and effective cation exchange capacity (ECEC). These parameters, in turn, exert a significant influence on heavy metal adsorption. Consequently, heavy metal content in >150ìm particles was lower than in the case of fine particles. The particle size range <75ìm had the highest heavy metal content, corresponding with its high clay forming minerals, high organic matter and low quartz content which increased the SSA, ECEC and the presence of Fe, Al and Mn oxides. The clay forming minerals, high organic matter and Fe, Al and Mn oxides create distinct groups of charge sites on solids surfaces and exhibit different adsorption mechanisms and bond strength, between heavy metal elements and charge sites. Therefore, the predominance of these factors in different particle sizes leads to different heavy metal adsorption characteristics. Heavy metals show preference for association with clay forming minerals in fine solids particles, whilst in coarse particles heavy metals preferentially associate with organic matter. Although heavy metal adsorption to amorphous material is very low, the heavy metals embedded in traffic related materials have a potential impact on stormwater quality.Adsorption of heavy metals is not confined to an individual type of charge site in solids, whereas specific heavy metal elements show preference for adsorption to several different types of charge sites in solids. This is attributed to the dearth of preferred binding sites and the inability to reach the preferred binding sites due to competition between different heavy metal species. This confirms that heavy metal adsorption is significantly influenced by the physical and chemical parameters of solids that lead to a heterogeneity of surface charge sites. The research study highlighted the importance of removal of solids particles from stormwater runoff before they enter into receiving waters to reduce the potential risk posed by the bioavailability of heavy metals. The bioavailability of heavy metals not only results from the easily mobile fraction bound to the solids particles, but can also occur as a result of the dissolution of other forms of bonds by chemical changes in stormwater or microbial activity. Due to the diversity in the composition of the different particle sizes of solids and the characteristics and amount of charge sites on the particle surfaces, investigations using bulk solids are not adequate to gain an understanding of the heavy metal adsorption processes of solids particles. Therefore, the investigation of different particle size ranges is recommended for enhancing stormwater quality management practices.
Resumo:
This paper examines discussions of Generation Y within higher education discourse, arguing the sector’s use of the term to describe students is misguided for three reasons. First, portraying students as belonging to Generation Y homogenises people undertaking higher education as young, middle-class and technologically literate. Second, speaking of Generation Y students allows constructivism to be reinvented as a ‘new’ learning and teaching philosophy. Third, the Generation Y university student has become a central figure in concerns about technology’s role in learning and teaching. While the notion of the ‘Generation Y student’ creates the illusion that higher education institutions understand their constituents, ultimately, it is of little value in explaining young adults’ educational experiences.
Resumo:
The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.
Resumo:
On 13 August, 1997 Prime Minister Mr Howard announced five principles as a foundation for a Tax Reform Package to revitalise the Australian economy. They were that: 1. there should be no overall increase in the overall tax burden; 2. any new taxation system should involve major reductions in personal income tax with special regard to the taxation treatment of families; 3. consideration should be given to a broad-based indirect tax to replace some or all of the existing indirect taxes; 4. there would be appropriate compensation for those deserving of special consideration; and 5. reform of Commonwealth-State financial relations must be addressed...
Resumo:
Exposures to traffic-related air pollution (TRAP) can be particularly high in transport microenvironments (i.e. in and around vehicles) despite the short durations typically spent there. There is a mounting body of evidence that suggests that this is especially true for fine (b2.5 μm) and ultrafine (b100 nm, UF) particles. Professional drivers, who spend extended periods of time in transport microenvironments due to their job, may incur exposures markedly higher than already elevated non-occupational exposures. Numerous epidemiological studies have shown a raised incidence of adverse health outcomes among professional drivers, and exposure to TRAP has been suggested as one of the possible causal factors. Despite this, data describing the range and determinants of occupational exposures to fine and UF particles are largely conspicuous in their absence. Such information could strengthen attempts to define the aetiology of professional drivers' illnesses as it relates to traffic combustion-derived particles. In this article, we suggest that the drivers' occupational fine and UF particle exposures are an exemplar case where opportunities exist to better link exposure science and epidemiology in addressing questions of causality. The nature of the hazard is first introduced, followed by an overview of the health effects attributable to exposures typical of transport microenvironments. Basic determinants of exposure and reduction strategies are also described, and finally the state of knowledge is briefly summarised along with an outline of the main unanswered questions in the topic area.
Resumo:
Purpose: To investigate the significance of sources around measurement sites, assist the development of control strategies for the important sources and mitigate the adverse effects of air pollution due to particle size. Methods: In this study, sampling was conducted at two sites located in urban/industrial and residential areas situated at roadsides along the Brisbane Urban Corridor. Ultrafine and fine particle measurements obtained at the two sites in June-July 2002 were analysed by Positive Matrix Factorization (PMF). Results: Six sources were present, including local traffic, two traffic sources, biomass burning, and two currently unidentified sources. Secondary particles had a significant impact at Site 1, while nitrates, peak traffic hours and main roads located close to the source also affected the results for both sites. Conclusions: This significant traffic corridor exemplifies the type of sources present in heavily trafficked locations and future attempts to control pollution in this type of environment could focus on the sources that were identified.
Resumo:
The study of matrices of rare Type 4 carbonaceous chondrites can reveal important information on parent body rnetamorp~ic processes and provide a comparison with processes on parent bodies of ordinary chc-idrites. Reflectance spectra (Tholen, 1984) from the two largest asteroids in the asteroid belt, Ceres and Pallas, suggest that they may be metamorphosed carbonaceous chondrites. These two asteroids constitute - onethird of the mass in the asteroid belt implying that type 4-6 carbonaceous chondrites are poorly represented in the meteorite collection and may be of considerable importance. The matrix of the C4 chondrite Karoonda has been investigated using a JEOL 2000FX analytical electron microscope (AEM) with an attached Tracor-Northem TN5500 energy dispersive spectrometer (EDS). In previous studies (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969), the petrography of the Karoonda matrix has been described as consisting largely of coarse-grained (50-200 urn in size) olivine and plagioclase (20-100 um in size), associated with micrometer sized magnetite and rare sulphides. AEM observations on matrix show that in addition to these large grains, there is a significant fraction (10 vol%) of interstitial fine grained phases « 5 urn). The mineralogy of these fine-grained phases differs in some respects from that of the coarser-grained matrix identified by optical and SEM techniques (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969). I~ particular crystals of two compositionally distinct pyroxenes « 2 urn in size) have been identified which have not been previously observed in Karoonda by other analytical techniques. Thin film microanalyses (Mackinnon et al., 1986) of these two pyroxenes indicate compositions consistent with augite and low-Ca pyroxene (- Fs27). Fine-grained anhedral olivine « 2 urn size) is the most abundant phase with composition -Fa29' This composition is essentially indistinguishable from that determined for coarser-grained matrix olivines using an electron microprobe (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969). All olivines are associated with subhedral magnetites « 1 urn size) which contain significant Cr (- 2%) and Al (- 1%) as was also noted for larger sized Karoonda magnetites by Delaney et al. (1985). It has recently been suggested (Burgess et al., 1987) on the basis of sulphur release profiles for S-isotope analyses of Karoonda that CaS04 (anhydrite) may be present. However, no sulphate phase has, as yet, been identified in the matrix of Karoonda. Low magnification contrast images suggest that Karoonda may have a significant porosity within the fine-grained matrix fraction. Most crystals are anhedral and do not show evidence for significant compaction. Individual grains often show single point contact with other grains which result in abundant intergranular voids. These voids frequently contain epoxy which was used as part of the specimen preparation procedure due to the friable nature of the bulk sample.
Resumo:
In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a var ...
Resumo:
A range of complementary analytical techniques including SEM/EDS, TEM/EDS and conventional optical microscopy has been rigorously applied to precisely defined areas of micrinite in polished coal samples from Australia and New Zealand. Elemental analyses of micrinite regions showed a high abundance of Al, Si and O and high resolution images of micrinite revealed a grain size < 1μm. Electron diffraction and elemental analyses from individual grains within the optically and electron-optically correlated micrinite regions are consistent with the occurence of fine-grained kaolinite. The optical properties of "dark clay" and "micrinite" (i.e. fine-grained kaolinite) can be understood in terms of the diffuse scattering of visible light from the surfaces of materials with different grain sizes in single-phase or multi-phase mixtures.
Resumo:
This paper introduces PartSS, a new partition-based fil- tering for tasks performing string comparisons under edit distance constraints. PartSS offers improvements over the state-of-the-art method NGPP with the implementation of a new partitioning scheme and also improves filtering abil- ities by exploiting theoretical results on shifting and scaling ranges, thus accelerating the rate of calculating edit distance between strings. PartSS filtering has been implemented within two major tasks of data integration: similarity join and approximate membership extraction under edit distance constraints. The evaluation on an extensive range of real-world datasets demonstrates major gain in efficiency over NGPP and QGrams approaches.
Resumo:
Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease.