418 resultados para explicit undervisning
Resumo:
This paper engages with debates about whether comprehensive prior specification of criteria and standards is sufficient for informed professional judgement. A preoccupation has emerged with the specificity and explication of criteria intended to regulate judgement. This has resulted in criteria-compliance in the use of defined standards to validate judgements and improve reliability and consistency. Compliance has become a priority, the consequence being the prominence of explicit criteria, to the lack of acknowledgement of the operation of latent and meta-criteria within judgement practice. This paper examines judgement as a process involving three categories of assessment criteria in the context of standards-referenced systems: explicit, latent and meta-criteria. These are understood to be wholly interrelated and interdependent. A conceptualisation of judgement involving the interplay of the three criteria types is presented with an exploration of how they function to focus or alter assessments of quality in judgements of achievement in English and Mathematics.
Resumo:
Mentoring pedagogical knowledge is fundamental towards developing preservice teachers’ practices. As a result of a train-the-trainer mentoring program, this study aimed to understand how mentors’ engagement in a professional development program on mentoring contributes to their mentoring of pedagogical knowledge practices. This qualitative research analyses the mentoring of pedagogical knowledge from six paired mentor teachers and preservice teachers (n=12) after a four-week professional school experience. Findings indicated the train-the-trainer model was successful for mentoring pedagogical knowledge on 10 of the 11 advocated practices. This suggested that a well-constructed professional development program on mentoring can advance the quality of mentoring for enhancing preservice teachers’ practices.
Resumo:
The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.
Resumo:
The pioneering work of Runge and Kutta a hundred years ago has ultimately led to suites of sophisticated numerical methods suitable for solving complex systems of deterministic ordinary differential equations. However, in many modelling situations, the appropriate representation is a stochastic differential equation and here numerical methods are much less sophisticated. In this paper a very general class of stochastic Runge-Kutta methods is presented and much more efficient classes of explicit methods than previous extant methods are constructed. In particular, a method of strong order 2 with a deterministic component based on the classical Runge-Kutta method is constructed and some numerical results are presented to demonstrate the efficacy of this approach.
Resumo:
There exists an important tradition of content analyses of aggression in sexually explicit material. The majority of these analyses use a definition of aggression that excludes consent. This article identifies three problems with this approach. First, it does not distinguish between aggression and some positive acts. Second, it excludes a key element of healthy sexuality. Third, it can lead to heteronormative definitions of healthy sexuality. It would be better to use a definition of aggression such as Baron and Richardson's (1994) in our content analyses, that includes a consideration of consent. A number of difficulties have been identified with attending to consent but this article offers solutions to each of these.
Resumo:
Making institutional expectations explicit using clear and common language engages commencing students and promotes help-seeking behaviour. When first year students enter university they cross the threshold into an unfamiliar environment (Devlin, Kift, Nelson, Smith & McKay, 2012). Universities endeavour to provide appropriate learning support services and resources; however research suggests that there is limited up take of these services, particularly in high risk students (Nelson-Field & Goodman, 2005). The Successful Student Skills Checklist is a tool which will be trialled during the 2013 Orientation period at the QUT Caboolture campus. The new tool is a response to the university’s commitment to provide “an environment where [students] are supported to take responsibility for their own learning, and to embrace an active role in succeeding to their full potential” (QUT, 2012, 6.2.1). This paper will outline the design of the support tool implemented during Orientation, as well as discuss the anticipated outcomes of the trial.
Resumo:
Online dating websites enable a specific form of social networking and their efficiency can be increased by supporting proactive recommendations based on participants' preferences with the use of data mining. This research develops two-way recommendation methods for people-to-people recommendation for large online social networks such as online dating networks. This research discovers the characteristics of the online dating networks and utilises these characteristics in developing efficient people-to-people recommendation methods. Methods developed support improved recommendation accuracy, can handle data sparsity that often comes with large data sets and are scalable for handling online networks with a large number of users.
Resumo:
There is little conjecture that quality teaching is essential to student achievement and well-being. Whilst much has been written about the importance of quality teaching, including the link to pre-service teacher education, to date there has been little investigation into specific pedagogical practices that can enhance quality teaching dimensions within a pre-service teacher education programme. This paper reports on a small-scale qualitative research study, undertaken in an Australian university, which linked the fields of quality teaching, pre-service teacher education and values education. The study followed the journey of five pre-service teacher education students as they undertook their second field experience unit where the focus was centred on the values-based pedagogy of Philosophy in the Classroom. The research findings, collected via interviews, demonstrated that an explicit values-based pedagogy can have a positive impact on the development of quality teaching dimensions. This new knowledge has potential for further research into examining the ways quality teaching dimensions are gained and practised by pre-service teacher education students and these findings and recommendations are discussed in this paper.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
1. Biodiversity, water quality and ecosystem processes in streams are known to be influenced by the terrestrial landscape over a range of spatial and temporal scales. Lumped attributes (i.e. per cent land use) are often used to characterise the condition of the catchment; however, they are not spatially explicit and do not account for the disproportionate influence of land located near the stream or connected by overland flow. 2. We compared seven landscape representation metrics to determine whether accounting for the spatial proximity and hydrological effects of land use can be used to account for additional variability in indicators of stream ecosystem health. The landscape metrics included the following: a lumped metric, four inverse-distance-weighted (IDW) metrics based on distance to the stream or survey site and two modified IDW metrics that also accounted for the level of hydrologic activity (HA-IDW). Ecosystem health data were obtained from the Ecological Health Monitoring Programme in Southeast Queensland, Australia and included measures of fish, invertebrates, physicochemistry and nutrients collected during two seasons over 4 years. Linear models were fitted to the stream indicators and landscape metrics, by season, and compared using an information-theoretic approach. 3. Although no single metric was most suitable for modelling all stream indicators, lumped metrics rarely performed as well as other metric types. Metrics based on proximity to the stream (IDW and HA-IDW) were more suitable for modelling fish indicators, while the HA-IDW metric based on proximity to the survey site generally outperformed others for invertebrates, irrespective of season. There was consistent support for metrics based on proximity to the survey site (IDW or HA-IDW) for all physicochemical indicators during the dry season, while a HA-IDW metric based on proximity to the stream was suitable for five of the six physicochemical indicators in the post-wet season. Only one nutrient indicator was tested and results showed that catchment area had a significant effect on the relationship between land use metrics and algal stable isotope ratios in both seasons. 4. Spatially explicit methods of landscape representation can clearly improve the predictive ability of many empirical models currently used to study the relationship between landscape, habitat and stream condition. A comparison of different metrics may provide clues about causal pathways and mechanistic processes behind correlative relationships and could be used to target restoration efforts strategically.
A derivative-free explicit method with order 1.0 for solving stochastic delay differential equations