407 resultados para evaporative water loss
Resumo:
Purpose: To determine visual performance in water, including the influence of pupil size. Method: The water environment was simulated by placing a goggle filled with saline in front of eyes, with apertures placed at the front of the goggle. Correction factors were determined for the different magnification under this condition to estimate vision in water. Experiments were conducted on letter visual acuity (7 participants), grating resolution (8 participants), and grating contrast sensitivity (1 participant). Results: For letter acuity, mean loss in vision in water, compared to corrected vision in air, varied between 1.1 log minutes of arc resolution (logMAR) for a 1mm aperture to 2.2 logMAR for a 7mm aperture. The vision in minutes of arc was described well by a linear relationship with pupil size. For grating acuity, mean loss varied between 1.1 logMAR for a 2mm aperture to 1.2 logMAR for a 6mm aperture. Contrast sensitivity for a 2mm aperture deteriorated as spatial frequency increased, with 2 log unit loss by 3 cycles/degree. Superimposed on this deterioration were depressions (notches) in sensitivity, with the first three notches occurring at 0.45, 0.8 and 1.3 cycles/degree and with estimates for water of 0.39, 0.70 and 1.13 cycles/degree. Conclusion: Vision in water is poor. It becomes worse as pupil size increases, but the effects are much more marked for letter targets than for grating targets.
Resumo:
The occurrence of extreme water levels along low-lying, highly populated and/or developed coastlines can lead to considerable loss of life and billions of dollars of damage to coastal infrastructure. Therefore it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood management, engineering and future land-use planning. This ensures the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. This paper estimates for the first time present day extreme water level exceedence probabilities around the whole coastline of Australia. A high-resolution depth averaged hydrodynamic model has been configured for the Australian continental shelf region and has been forced with tidal levels from a global tidal model and meteorological fields from a global reanalysis to generate a 61-year hindcast of water levels. Output from this model has been successfully validated against measurements from 30 tide gauge sites. At each numeric coastal grid point, extreme value distributions have been fitted to the derived time series of annual maxima and the several largest water levels each year to estimate exceedence probabilities. This provides a reliable estimate of water level probabilities around southern Australia; a region mainly impacted by extra-tropical cyclones. However, as the meteorological forcing used only weakly includes the effects of tropical cyclones, extreme water level probabilities are underestimated around the western, northern and north-eastern Australian coastline. In a companion paper we build on the work presented here and more accurately include tropical cyclone-induced surges in the estimation of extreme water level. The multi-decadal hindcast generated here has been used primarily to estimate extreme water level exceedance probabilities but could be used more widely in the future for a variety of other research and practical applications.
Resumo:
The unimolecular reactivities of a range of perbenzoate anions (X-C6H5CO3-), including the perbenzoate anion itself (X=H), nitroperbenzoates (X=para-, meta-, ortho-NO2), and methoxyperbenzoates (X=para-, meta-OCH3) were investigated in the gas phase by electrospray ionization tandem mass spectrometry. The collision-induced dissociation mass spectra of these compounds reveal product ions consistent with a major loss of carbon dioxide requiring unimolecular rearrangement of the perbenzoate anion prior to fragmentation. Isotopic labeling of the perbenzoate anion supports rearrangement via an initial nucleophilic aromatic substitution at the ortho carbon of the benzene ring, while data from substituted perbenzoates indicate that nucleophilic attack at the ipso carbon can be induced in the presence of electron-withdrawing moieties at the ortho and para positions. Electronic structure calculations carried out at the B3LYP/6311++G(d,p) level of theory reveal two competing reaction pathways for decarboxylation of perbenzoate anions via initial nucleophilic substitution at the ortho and ipso positions, respectively. Somewhat surprisingly, however, the computational data indicate that the reaction proceeds in both instances via epoxidation of the benzene ring with decarboxylation resulting-at least initially-in the formation of oxepin or benzene oxide anions rather than the energetically favored phenoxide anion. As such, this novel rearrangement of perbenzoate anions provides an intriguing new pathway for epoxidation of the usually inert benzene ring.
Resumo:
Communicating the mining industry’s water use is fundamental to maintaining its social license to operate but the majority of corporate reporting schemes list indicators. The Minerals Council of Australia’s Water Accounting Framework was designed to assist the minerals industry obtain consistency in its accounting method and in the definitions of terms used in water reporting. The significance of this paper is that it shows that the framework has been designed to be sufficiently robust to describe any mining/mineral related operation. The Water Accounting Framework was applied across four operations over three countries producing four commodities. The advantages of the framework were then evident through the presentation of the reports. The contextual statement of the framework was able to explain contrasting reuse efficiencies. The Input-Output statements showed that evaporation was a significant loss for most of the operations in the study which highlights a weakness of reporting schemes that focus on discharge volumes. The framework method promotes data reconciliation which proved the presence of flows that two operations in the study had neglected to provide. Whilst there are many advantages of the framework, the major points are that the reporting statements of the framework, when presented together, can better enable the public to understand water interactions at a site-level and allows for valid comparisons between sites, regardless of locale and commodity. With mining being a global industry, these advantages are best realised if there was international adoption of the framework.
Resumo:
The importance of clean drinking water in any community is absolutely vital if we as the consumers are to sustain a life of health and wellbeing. Suspended particles in surface waters not only provide the means to transport micro-organisms which can cause serious infections and diseases, they can also affect the performance capacity of a water treatment plant. In such situations pre-treatment ahead of the main plant is recommended. Previous research carried out using non-woven synthetic as a pre-filter materials for protecting slow sand filters from high turbidity showed that filter run times can be extended by several times and filters can be regenerated by simply removing and washing of the fabric ( Mbwette and Graham, 1987 and Mbwette, 1991). Geosynthetic materials have been extensively used for soil retention and dewatering in geotechnical applications and little research exists for the application of turbidity reduction in water treatment. With the development of new materials in geosynthetics today, it was hypothesized that the turbidity removal efficiency can be improved further by selecting appropriate materials. Two different geosynthetic materials (75 micron) tested at a filtration rate of 0.7 m/h yielded 30-45% reduction in turbidity with relatively minor head loss. It was found that the non-woven geotextile Propex 1701 retained the highest performance in both filtration efficiency and head loss across the varying turbidity ranges in comparison to other geotextiles tested. With 5 layers of the Propex 1701 an average percent reduction of approximately 67% was achieved with a head loss average of 4mm over the two and half hour testing period. Using the data collected for the Propex 1701 a mathematical model was developed for predicting the expected percent reduction given the ability to control the cost and as a result the number of layers to be used in a given filtration scenario.
Resumo:
In open-cut strip mining, waste material is placed in-pit to minimise operational mine costs. Slope failures in these spoil piles pose a significant safety risk to personnel, along with a financial risk from loss of equipment and scheduling delays. It has been observed that most spoil pile failures occur when the pit has been previously filled with water and then subsequently dewatered. The failures are often initiated at the base of spoil piles where the material can undergo significant slaking (disintegration) over time due to overburden pressure and water saturation. It is important to understand how the mechanical properties of base spoil material are affected by slaking when designing safe spoil pile slope angles, heights, and dewatering rates. In this study, fresh spoil material collected from a coal mine in Brown Basin Coalfield of Queensland, Australia was subjected to high overburden pressure (0 – 900 kPa) under saturated condition and maintained over a period of time (0 – 6 months) allowing the material to slake. To create the above conditions, laboratory designed pressure chambers were used. Once a spoil sample was slaked under certain overburden pressure over a period of time, it was tested for classification, permeability, and strength properties. Results of this testing program suggested that the slaking of saturated coal mine spoil increase with overburden pressure and the time duration over which the overburden pressure was maintained. Further, it was observed that shear strength and permeability of spoil decreased with increase in spoil slaking.
Resumo:
The effect of mechanochemical activation upon the intercalation of formamide into a high-defect kaolinite has been studied using a combination of X-ray diffraction, thermal analysis, and DRIFT spectroscopy. X-ray diffraction shows that the intensity of the d(001) spacing decreases with grinding time and that the intercalated high-defect kaolinite expands to 10.2 A. The intensity of the peak of the expanded phase of the formamide-intercalated kaolinite decreases with grinding time. Thermal analysis reveals that the evolution temperature of the adsorbed formamide and loss of the inserting molecule increases with increased grinding time. The temperature of the dehydroxylation of the formamide-intercalated high-defect kaolinite decreases from 495 to 470oC with mechanochemical activation. Changes in the surface structure of the mechanochemically activated formamide-intercalated high-defect kaolinite were followed by DRIFT spectroscopy. Fundamentally the intensity of the high-defect kaolinite hydroxyl stretching bands decreases exponentially with grinding time and simultaneously the intensity of the bands attributed to the OH stretching vibrations of water increased. It is proposed that the mechanochemical activation of the high-defect kaolinite caused the conversion of the hydroxyls to water which coordinates the kaolinite surface. Significant changes in the infrared bands assigned to the hydroxyl deformation and amide stretching and bending modes were observed. The intensity decrease of these bands was exponentially related to the grinding time. The position of the amide C&unknown;O vibrational mode was found to be sensitive to grinding time. The effect of mechanochemical activation of the high-defect kaolinite reduces the capacity of the kaolinite to be intercalated with formamide.