26 resultados para equilibrium equation of number density
Resumo:
This study evaluated the complexity of calcium ion exchange with sodium exchanged weak acid cation resin (DOW MAC-3). Exchange equilibria recorded for a range of different solution normalities revealed profiles which were represented by conventional “L” or “H” type isotherms at low values of equilibrium concentration (Ce) of calcium ions, plus a superimposed region of increasing calcium uptake was observed at high Ce values. The loading of calcium ions was determined to be ca. 53.5 to 58.7 g/kg of resin when modelling only the sorption curve created at low Ce values,which exhibited a well-defined plateau. The calculated calcium ion loading capacity for DOWMAC-3 resin appeared to correlate with the manufacturer's recommendation. The phenomenon of super equivalent ion exchange (SEIX) was observed when the “driving force” for the exchange process was increased in excess of 2.25 mmol calcium ions per gram of resin in the starting solution. This latter event was explained in terms of displacement of sodium ions from sodium hydroxide solution which remained in the resin bead following the initial conversion of the as supplied “H+” exchanged resin sites to the “Na+” version required for softening studies. Evidence for hydrolysis of a small fraction of the sites on the sodium exchanged resin surface was noted. The importance of carefully choosing experimental parameters was discussed especially in relation to application of the Langmuir–Vageler expression. This latter model which compared the ratio of the initial calcium ion concentration in solution to resin mass, versus final equilibrium loading of the calcium ions on the resin; was discovered to be an excellent means of identifying the progress of the calcium–sodium ion exchange process. Moreover, the Langmuir–Vageler model facilitated standardization of various calcium–sodium ion exchange experiments which allowed systematic experimental design.
Resumo:
Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.
Resumo:
Context: Osteoporosis is a common, highly heritable condition that causes substantial morbidity and mortality, the etiopathogenesis of which is poorly understood. Genetic studies are making increasingly rapid progress in identifying the genes involved. Evidence Acquisition and Synthesis: In this review, we will summarize the current understanding of the genetics of osteoporosis based on publications from PubMed from the year 1987 onward. Conclusions: Most genes involved in osteoporosis identified to date encode components of known pathways involved in bone synthesis or resorption, but as the field progresses, new pathways are being identified. Only a small proportion of the total genetic variation involved in osteoporosis has been identified, and new approaches will be required to identify most of the remaining genes.
Resumo:
Genetic factors are known to influence both the peak bone mass and probably the rate of change in bone density. A range of regulatory and structural genes has been proposed to be involved including collagen 1α1 (COL1A1), the estrogen receptor (ER), and the vitamin D receptor (VDR), but the actual genes involved are uncertain. We therefore studied the role of the COL1A1 and VDR loci in control of bone density by linkage in 45 dizygotic twin pairs and 29 nuclear families comprising 120 individuals. The influences on bone density of polymorphisms of COL1A1, VDR, and ER were studied by association both cross-sectionally and longitudinally in 193 elderly postmenopausal women (average age, 69 years) over a mean follow-up time of 6.3 years. Weak linkage of the COL1A1 locus with bone density was observed in both twins and families (p = 0.02 in both data sets), confirming previous observations of linkage of this locus with bone density. Association between the MscI polymorphism of COL1A1 and rate of lumbar spine bone loss was observed with significant gene-environment interaction related to dietary calcium intake (p = 0.0006). In the lowest tertile of dietary calcium intake, carriers of "s" alleles lost more bone than "SS" homozygotes (p = 0.01), whereas the opposite was observed in the highest dietary calcium intake (p = 0.003). Association also was observed between rate of bone loss at both the femoral neck and the lumbar spine and the TaqI VDR polymorphism (p = 0.03). This association was strongest in those in the lowest tertile of calcium intake, also suggesting the presence of gene-environment interaction involving dietary calcium and VDR, influencing bone turnover. No significant association was observed between the PvuII ER polymorphism alone or in combination with VDR or COL1A1 genotypes, with either bone density or its rate of change. These data support the involvement of COL1A1 in determination of bone density and the interaction of both COL1A1 and VDR with calcium intake in regulation of change of bone density over time.
Resumo:
Objective. To assess the cost-effectiveness of bone density screening programmes for osteoporosis. Study design. Using published and locally available data regarding fracture rates and treatment costs, the overall costs per fracture prevented, cost per quality of life year (QALY) saved and cost per year of life gained were estimated for different bone density screening and osteoporosis treatment programmes. Main outcome measures. Cost per fracture prevented, cost per QALY saved, and cost per year of life gained. Results. In women over the age of 50 years, the costs per fracture prevented of treating all women with hormone replacement therapy, or treating only if osteoporosis is demonstrated on bone density screening were £32,594 or £23,867 respectively. For alendronate therapy for the same groups, the costs were £171,067 and £14,067 respectively. Once the background rate of treatment with alendronate reaches 18%, bone density screening becomes cost-saving. Costs estimates per QALY saved ranged from £1,514 to £39,076 for osteoporosis treatment with alendronate following bone density screening. Conclusions. For relatively expensive medications such as alendronate, treatment programmes with prior bone density screening are far more cost effective than those without, and in some circumstances become cost-saving. Costs per QALY of life saved and per year of life gained for osteoporosis treatment with prior bone density screening compare favourably with treatment of hypertension and hypercholesterolemia.
Resumo:
This submission addresses the problem of housing price inflation, the chronic under-supply of new housing stock, and the resultant decline in housing affordability for low and middle income households. It specifically focusses on the supply of medium density housing (multi-unit development) in Melbourne, although we believe that the observations made about housing in supply in Melbourne are relevant in other urban centres and to other types of housing supply. In terms of medium density housing (MDH) our concern also extends to the poor quality and design. Why the market tends to deliver generic apartments of poor quality and design which are uncompetitive with lower density housing and amenity despite planning objectives, and how this apparently intractable problem can be overcome is the topic of this submission...
Resumo:
The effects of fish density distribution and effort distribution on the overall catchability coefficient are examined. Emphasis is also on how aggregation and effort distribution interact to affect overall catch rate [catch per unit effort (cpue)]. In particular, it is proposed to evaluate three indices, the catchability index, the knowledge parameter, and the aggregation index, to describe the effectiveness of targeting and the effects on overall catchability in the stock area. Analytical expressions are provided so that these indices can easily be calculated. The average of the cpue calculated from small units where fishing is random is a better index for measuring the stock abundance. The overall cpue, the ratio of lumped catch and effort, together with the average cpue, can be used to assess the effectiveness of targeting. The proposed methods are applied to the commercial catch and effort data from the Australian northern prawn fishery. The indices are obtained assuming a power law for the effort distribution as an approximation of targeting during the fishing operation. Targeting increased catchability in some areas by 10%, which may have important implications on management advice.
Resumo:
This paper is concerned with the study of the equilibrium exchange of ammonium ions with two natural zeolite samples sourced in Australia from Castle Mountain Zeolites and Zeolite Australia. A range of sorption models including Langmuir Vageler, Competitive Langmuir, Freundlich, Temkin, Dubinin Astakhov and Brouers–Sotolongo were applied in order to gain an insight as to the exchange process. In contrast to most previous studies, non-linear regression was used in all instances to determine the best fit of the experimental data. Castle Mountain natural zeolite was found to exhibit higher ammonium capacity than Zeolite Australia material when in the freshly received state, and this behavior was related to the greater amount of sodium ions present relative to calcium ions on the zeolite exchange sites. The zeolite capacity for ammonium ions was also found to be dependent on the solution normality, with 35–60% increase inuptake noted when increasing the ammonium concentration from 250 to 1000 mg/L. The optimal fit ofthe equilibrium data was achieved by the Freundlich expression as confirmed by use of Akaikes Information Criteria. It was emphasized that the bottle-point method chosen influenced the isotherm profile in several ways, and could lead to misleading interpretation of experiments, especially if the constant zeolite mass approach was followed. Pre-treatment of natural zeolite with acid and subsequently sodium hydroxide promoted the uptake of ammonium species by at least 90%. This paper highlighted the factors which should be taken into account when investigating ammonium ion exchange with natural zeolites.
Resumo:
This research paper reports on phase one of an investigation of video recorded intensive one-to-one teaching interactions with 6–7-year-old students who were in their second year of schooling in Australia and identified by the their teacher as low attaining in early number. The two-phased study from which this paper emerges was originally conducted in 1998 as part of my Bachelor of Teaching Honours (Research) program at Southern Cross University Lismore, New South Wales. That study identified teaching interactions particularly suited to one-to-one teaching in the Maths Recovery Program, a program designed for these students who were at risk of failure in early number. Since that time a great deal has not changed with limited literature available that comprehensively reports on teaching interactions in intensive one-to-one settings. Revisiting the original study is considered timely given the increasing number of withdrawal and intensive programs now funded and adopted by schools and yet, rarely reported on in terms of the effectiveness of the teaching interactions that occur in such settings. This paper then presents a discussion of a preliminary series of teaching interactions that either positively and or negatively influence an intensive one-to-one teaching and learning setting
Resumo:
This study reports an investigation of the ion exchange treatment of sodium chloride solutions in relation to use of resin technology for applications such as desalination of brackish water. In particular, a strong acid cation (SAC) resin (DOW Marathon C) was studied to determine its capacity for sodium uptake and to evaluate the fundamentals of the ion exchange process involved. Key questions to answer included: impact of resin identity; best models to simulate the kinetics and equilibrium exchange behaviour of sodium ions; difference between using linear least squares (LLS) and non-linear least squares (NLLS) methods for data interpretation; and, effect of changing the type of anion in solution which accompanied the sodium species. Kinetic studies suggested that the exchange process was best described by a pseudo first order rate expression based upon non-linear least squares analysis of the test data. Application of the Langmuir Vageler isotherm model was recommended as it allowed confirmation that experimental conditions were sufficient for maximum loading of sodium ions to occur. The Freundlich expression best fitted the equilibrium data when analysing the information by a NLLS approach. In contrast, LLS methods suggested that the Langmuir model was optimal for describing the equilibrium process. The Competitive Langmuir model which considered the stoichiometric nature of ion exchange process, estimated the maximum loading of sodium ions to be 64.7 g Na/kg resin. This latter value was comparable to sodium ion capacities for SAC resin published previously. Inherent discrepancies involved when using linearized versions of kinetic and isotherm equations were illustrated, and despite their widespread use, the value of this latter approach was questionable. The equilibrium behaviour of sodium ions form sodium fluoride solution revealed that the sodium ions were now more preferred by the resin compared to the situation with sodium chloride. The solution chemistry of hydrofluoric acid was suggested as promoting the affinity of the sodium ions to the resin.
Resumo:
The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF = 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.