370 resultados para drug-design
Resumo:
Pulmonary drug delivery is the focus of much research and development because of its great potential to produce maximum therapeutic benefit. Among the available options the dry powder inhaler (DPI) is the preferred device for the treatment of an increasingly diverse number of diseases. However, as drug delivery from a DPI involves a complicated set of physical processes and the integration of drug formulations, device design and patient usage, the engineering development of this medical technology is proving to be a great challenge. Currently there is large range of devices that are either available on the market or under development, however, none exhibit superior clinical efficacy. A major concern is the inter- and intra-patient variability of the drug dosage delivered to the deep lungs. The extent of variability depends on the drug formulation, the device design and the patient’s inhalation profile. This article reviews recent advances in DPI technology and presents the key factors which motivate and constrain the successful engineering of a universal, patient-independent DPI that is capable of efficient, reliable and repeatable drug delivery. A strong emphasis is placed on the physical processes of drug powder aerosolisation, deagglomeration, and dispersion and on the engineering of formulations and inhalers that can optimise these processes.
Resumo:
Here we present a sequential Monte Carlo approach to Bayesian sequential design for the incorporation of model uncertainty. The methodology is demonstrated through the development and implementation of two model discrimination utilities; mutual information and total separation, but it can also be applied more generally if one has different experimental aims. A sequential Monte Carlo algorithm is run for each rival model (in parallel), and provides a convenient estimate of the marginal likelihood (of each model) given the data, which can be used for model comparison and in the evaluation of utility functions. A major benefit of this approach is that it requires very little problem specific tuning and is also computationally efficient when compared to full Markov chain Monte Carlo approaches. This research is motivated by applications in drug development and chemical engineering.
Resumo:
Many clinicians in the area of drug addiction believe that emotional problems arise from particular styles of parenting. To investigate this link, 63 young male and female addicts who had sought treatment completed the Parental Bonding Instrument which tapped their perceptions of their relationship with each parent. Addicts reported early parental experiences differing from those of a control group. Drug abusers judged their parents as cold, indifferent, controlling and intrusive. In addition, these perceptions were shared by male and female addicts. These results, together with previous research suggest that these perceptions might well point to a general risk factor for the development of a broad range of psychological and psychiatric disorders. In addition, the issue of family factors in the design and implementation of drug treatment programs needs to be addressed.
Resumo:
Bioceramics play an important role in repairing and regenerating bone defects. Annually, more than 500,000 bone graft procedures are performed in the United states and approximately 2.2 million are conducted worldwide. The estimated cost of these procedures approaches $2.5billion per year. Around 60% of the bone graft substitutes available on the market involve bioceramics. It is reported that bioceramics in the world market increase by 9% per year. For this reason, the research of bioceramics has been one of the most active areas during, the past several years. Considering the significant importance of bioceramics, our goal was to compile this book to review the latest research advances in the field of bioceramics. The text also summarizes our work during the past 10 years in an effort to share innovative concepts, design of bioceramisc, and methods for material synthesis and drug delivery. We anticipate that this text will provide some useful information and guidance in the bioceramics field for biomedical engineering researchers and material scientists. Information on novel mesoporous bioactive glasses and silicate-based ceramics for bone regeneration and drug delivery are presented. Mesoporous bioactive glasses have shown multifunctional characteristics of bone regeneration and drug delivery due to their special mesopore structures,whereas silicated-based bioceramics, as typical third-generation biomaterials,possess significant osteostimulation properties. Silica nanospheres with a core-shell structure and specific properties for controllable drug delivery have been carefully reviewed-a variety of advanced synthetic strategies have been developed to construct functional mesoporous silica nanoparticles with a core-shell structure, including hollow, magnetic, or luminescent, and other multifunctional core-shell mesoporous silica nanoparticles. In addition, multifunctional drug delivery systems based on these nanoparticles have been designed and optimized to deliver the drugs into the targeted organs or cells,with a controllable release fashioned by virtue of various internal and external triggers. The novel 3D-printing technique to prepare advanced bioceramic scaffolds for bone tissue engineering applications has been highlighted, including the preparation, mechanical strength, and biological properties of 3D-printed porous scaffolds of calcium phosphate cement and silicate bioceramics. Three-dimensional printing techniques offer improved large-pore structure and mechanical strength. In addition , biomimetic preparation and controllable crystal growth as well as biomineralization of bioceramics are summarized, showing the latest research progress in this area. Finally, inorganic and organic composite materials are reviewed for bone regeneration and gene delivery. Bioactive inorganic and organic composite materials offer unique biological, electrical, and mechanical properties for designing excellent bone regeneration or gene delivery systems. It is our sincere hope that this book will updated the reader as to the research progress of bioceramics and their applications in bone repair and regeneration. It will be the best reward to all the contributors of this book if their efforts herein in some way help reader in any part of their study, research, and career development.
Resumo:
We present the treatment rationale and study design of the MetLung phase III study. This study will investigate onartuzumab (MetMAb) in combination with erlotinib compared with erlotinib alone, as second- or third-line treatment, in patients with advanced non-small-cell lung cancer (NSCLC) who are Met-positive by immunohistochemistry. Approximately 490 patients (245 per treatment arm) will receive erlotinib (150 mg oral daily) plus onartuzumab or placebo (15 mg/kg intravenous every 3 weeks) until disease progression, unacceptable toxicity, patient or physician decision to discontinue, or death. The efficacy objectives of this study are to compare overall survival (OS) (primary endpoint), progression-free survival, and response rates between the 2 treatment arms. In addition, safety, quality of life, pharmacokinetics, and translational research will be investigated across treatment arms. If the primary objective (OS) is achieved, this study will provide robust results toward an alternative treatment option for patients with Met-positive second- or third-line NSCLC. © 2012 Elsevier Inc. All Rights Reserved.
Resumo:
A focused library based on the marine natural products polyandrocarpamines A (1) and B (2) has been designed and synthesised using parallel solution-phase chemistry. In silico physicochemical property calculations were performed on synthetic candidates in order to optimise the library for drug discovery and chemical biology. A library of ten 2-aminoimidazolone products (3–12) was prepared by coupling glycocyamidine and a variety of aldehydes using a one-step stereoselective aldol condensation reaction under microwave conditions. All analogues were characterised by NMR, UV, IR and MS. The library was evaluated for cytotoxicity towards the prostate cancer cell lines, LNCaP, PC-3 and 22Rv1.
Resumo:
Introduction and aims: Despite evidence that many Australian adolescents have considerable experience with various drug types, little is known about the extent to which adolescents use multiple substances. The aim of this study was to examine the degree of clustering of drug types within individuals, and the extent to which demographic and psychosocial predictors are related to cluster membership. Design and method: A sample of 1402 adolescents aged 12-17. years were extracted from the Australian 2007 National Drug Strategy Household Survey. Extracted data included lifetime use of 10 substances, gender, psychological distress, physical health, perceived peer substance use, socioeconomic disadvantage, and regionality. Latent class analysis was used to determine clusters, and multinomial logistic regression employed to examine predictors of cluster membership. Result: There were 3 latent classes. The great majority (79.6%) of adolescents used alcohol only, 18.3% were limited range multidrug users (encompassing alcohol, tobacco, and marijuana), and 2% were extended range multidrug users. Perceived peer drug use and psychological distress predicted limited and extended multiple drug use. Psychological distress was a more significant predictor of extended multidrug use compared to limited multidrug use. Discussion and conclusion: In the Australian school-based prevention setting, a very strong focus on alcohol use and the linkages between alcohol, tobacco and marijuana are warranted. Psychological distress may be an important target for screening and early intervention for adolescents who use multiple drugs.
Resumo:
Tissue engineering technologies, which have originally been designed to reconstitute damaged tissue structure and function, can mimic not only tissue regeneration processes but also cancer development and progression. Bioengineered approaches allow cell biologists to develop sophisticated experimentally and physiologically relevant cancer models to recapitulate the complexity of the disease seen in patients. Tissue engineering tools enable three-dimensionality based on the design of biomaterials and scaffolds that re-create the geometry, chemistry, function and signalling milieu of the native tumour microenvironment. Three-dimensional (3D) microenvironments, including cell-derived matrices, biomaterial-based cell culture models and integrated co-cultures with engineered stromal components, are powerful tools to study dynamic processes like proteolytic functions associated with cancer progression, metastasis and resistance to therapeutics. In this review, we discuss how biomimetic strategies can reproduce a humanised niche for human cancer cells, such as peritoneal or bone-like microenvironments, addressing specific aspects of ovarian and prostate cancer progression and therapy response.
Resumo:
Purpose Endometrial adenocarcinoma (EC) is the most common gynaecologic cancer. Up to 90% of EC patients are obese which poses a health threat to patients post-treatment. Standard treatment for EC includes hysterectomy, although this has significant side effects for obese women at high risk of surgical complications and for women of childbearing age. This trial investigates the effectiveness of non-surgical or conservative treatment options for obese women with early stage EC. The primary aim is to determine the efficacy of: levonorgestrel intrauterine device (LNG-IUD); with or without metformin (an antidiabetic drug); and with or without a weight loss intervention to achieve a pathological complete response (pCR) in EC at six months from study treatment initiation. The secondary aim is to enhance understanding of the molecular processes and to predict a treatment response by investigating EC biomarkers. Methods An open label, three-armed, randomised, phase-II, multi-centre trial of LNG-IUD ± metformin ± weight loss intervention. 165 participants from 28 centres are randomly assigned in a 3:3:5 ratio to the treatment arms. Clinical, quality of life and health behavioural data will be collected at baseline, six weeks, three and six months. EC biomarkers will be assessed at baseline, three and six months. Conclusions There is limited prospective evidence for conservative treatment for EC. Trial results could benefit patients and reduce health system costs through a reduction in hospitalisations and through lower incidence of adverse events currently observed with standard treatment.
Resumo:
DNA may take a leading role in a future generation of blockbuster therapeutics. DNA has inherent advantages over other biomolecules such as protein, RNA and virus-like particles including safety, production simplicity and higher stability at ambient temperatures. Vaccination is the principal measure for preventing influenza and reducing the impact of pandemics; however, vaccines take up to 8-9 months to produce, and the global production capacity is woefully low. With production times as short as 2 weeks, improved safety and stability, bioprocess engineering developments, and the ability to perform numerous therapeutic roles, DNA has the potential to meet the demands of emerging and existing diseases. DNA is experiencing sharp growths in demand as indicated by its use in gene therapy trials and DNA vaccine related patents. Of particular interest for therapeutic use is plasmid DNA (pDNA), a form of non-genomic DNA that makes use of cellular machinery to express proteins or antigens. The production stages of fermentation and downstream purification are considered in this article. Forward looking approaches to purifying and delivering DNA are reported, including affinity chromatography and nasal inhalation. The place that pDNA may take in the preparation for and protection against pandemics is considered. If DNA therapeutics and vaccines prove to be effective, the ultimate scale of production will be huge which shall require associated bioprocess engineering research and development for purification of this large, unique biomolecule.
Resumo:
A monolithic stationary phase was prepared via free radical co-polymerization of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with pore diameter tailored specifically for plasmid binding, retention and elution. The polymer was functionalized. with 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) for anion-exchange purification of plasmid DNA (pDNA) from clarified lysate obtained from E. coli DH5α-pUC19 culture in a ribonuclease/ protease-free environment. Characterization of the monolithic resin showed a porous material, with 68% of the pores existing in the matrix having diameters above 300 nm. The final product isolated from a single-stage 5 min anion-exchange purification was a pure and homogeneous supercoiled (SC) pDNA with no gDNA, RNA and protein contamination as confirmed by ethidium bromide agarose gel electrophoresis (EtBr-AGE), enzyme restriction analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This non-toxic technique is cGMP compatible and highly scalable for production of pDNA on a commercial level.
Resumo:
As negative employee attitudes towards alcohol and other drug (AOD) policies may have serious consequences for organizations, the present study examined demographic and attitudinal dimensions leading to employees’ perceptions of AOD policy effectiveness. Survey responses were obtained from 147 employees in an Australian agricultural organization. Three dimensions of attitudes towards AOD policies were examined: knowledge of policy features, attitudes towards testing, and preventative measures such as job design and organizational involvement in community health. Demographic differences were identified, with males and blue-collar employees reporting significantly more negative attitudes towards the AOD policy. Attitude dimensions were stronger predictors of perceptions of policy effectiveness than demographics, and the strongest predictor was preventative measures. This suggests that organizations should do more than design adequate and fair AOD policies, and take a more holistic approach to AOD impairment by engaging in workplace design to reduce AOD use and promote a consistent health message to employees and the community.
Resumo:
AIMS: To examine changes in illicit drug consumption between peak holiday season (23 December-3 January) in Australia and a control period two months later in a coastal urban area, an inland semi-rural area and an island populated predominantly by vacationers during holidays. DESIGN: Analysis of representative daily composite wastewater samples collected from the inlet of the major wastewater treatment plant in each area. SETTING: Three wastewater treatment plants. PARTICIPANTS: Wastewater treatment plants serviced approximately 350, 000 persons in the urban area, 120,000 in the semi-rural area and 1100-2400 on the island. MEASUREMENTS: Drug residues were analysed using liquid chromatography coupled to a tandem mass spectrometer. Per capita drug consumption was estimated. Changes in drug use were quantified using Hedges' g. FINDINGS: During the holidays, cannabis consumption in the semi-rural area declined (g = -2.8) as did methamphetamine (-0.8), whereas cocaine (+1.5) and ecstasy (+1.6) use increased. In the urban area, consumption of all drugs increased during holidays (cannabis +1.6, cocaine +1.2, ecstasy +0.8 and methamphetamine +0.3). In the vacation area, methamphetamine (+0.7), ecstasy (+0.7) and cocaine (+1.1) use increased, but cannabis (-0.5) use decreased during holiday periods. CONCLUSIONS: While the peak holiday season in Australia is perceived as a period of increased drug use, this is not uniform across all drugs and areas. Substantial declines in drug use in the semi-rural area contrasted with substantial increases in urban and vacation areas. Per capita drug consumption in the vacation area was equivalent to that in the urban area, implying that these locations merit particular attention for drug use monitoring and harm minimisation measures.
Resumo:
Introduction and Aims: Wastewater analysis has become a useful technique for monitoring illicit drug use in communities. Findings have been reported from different countries in Europe and North America. We applied this technique to gauge the illicit drug consumption in an urban catchment from South East Queensland, Australia. Design and Methods: The sampling campaigns were conducted in 2009 (21st November – 2nd December) and 2010 (19th – 25th November). We collected daily composite wastewater samples from the inlet of the sewage treatment plant using continuous flow-proportional sampling. Ten illicit drug residues (parent compounds and key metabolites) in the samples were measured using liquid chromatography coupled to tandem mass spectrometer. Results: Seven compounds were quantified in all the samples. Our data indicated higher drug consumption on weekends. Cannabis was the highest used drug in both sampling periods. Compared to the first sampling campaign which indicated that cocaine and methamphetamine use exceeded ecstasy usage, the second sampling campaign suggested the use of methamphetamine exceeded that of ecstasy which in turn exceeded cocaine use. Discussion and Conclusions: The observed weekly trend of drug use in our study is in agreement with findings in other studies. The variation between two sampling periods in the prevalence of drug use may relate to the availability and prices of the drugs on markets. The cocaine use we estimated in 2009 was much greater than estimations obtained through the national household survey [1], implying under- reporting of cocaine use in surveys. Future work is underway to tackle methodological challenges for more accurate estimation.
Resumo:
Introduction and Aims: Holiday periods are potentially a time for increased substance use as social events and private parties are more common. Data on community illicit drug consumption during holiday periods are limited. Besides existing methods for determining drug use, such as population surveys, one emerging method is to measure illicit drugs and/or their metabolites in wastewater samples. This study examined the change in consumption of cannabis, methamphetamine, cocaine and 3,4- methylenedioxymethamphetamine in three different types of areas (an inland semi-rural area, a coastal urban area and a vacation island) with respect to holiday times. Design and Methods: Samples were collected at the inlet of the major wastewater treatment plant in each area during a key annual holiday (i.e. the summer holiday including Christmas and New Year) and control period. Illicit drug residues in the daily composited samples were measured by liquid chromatography coupled with tandem mass spectrometry. Results: Drug use varied substantially among the three areas within each monitoring period as well as between the holiday and control period within each area. Use consistently increased and peaked over New Year particularly for cocaine and 3,4-methylenedioxymethamphetamine whereas cannabis and methamphetamine were relatively less subjected to holiday times in all the areas. Discussion and Conclusions: Wastewater sampling and analysis provides higher spatio-temporal resolution than national surveys and supplements drug epidemiology studies originating primary in metropolitan locations. Such data is essential for policy makers to plan potential intervention strategies associated with these illicit substances in regional areas and other settings besides urban areas in the future.