87 resultados para deformation microstructure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Column elements at a certain level in building are subjected to loads from different tributary areas. Consequently, differential axial deformation among these elements occurs. Adverse effects of differential axial deformation increase with building height and geometric complexity. Vibrating wire, electronic strain and external mechanical strain gauges are used to measure the axial deformations to take adequate provisions to mitigate the adverse effects. These gauges require deploying in or on the elements during their construction in order to acquire necessary measurements continuously. The use of these gauges is therefore inconvenient and uneconomical. This highlights the need for a method to quantify the axial deformation using ambient measurements. This paper proposes a comprehensive vibration based method. The unique capabilities of the proposed method present through an illustrative example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the molecular dynamics simulation, plastic deformation mechanisms associated with the zigzag stress curves in perfect and surface defected copper nanowires under uniaxial tension are studied. In our previous study, it has found that the surface defect exerts larger influence than the centro-plane defect, and the 45o surface defect appears as the most influential surface defect. Hence, in this paper, the nanowire with a 45o surface defect is chosen to investigate the defect’s effect to the plastic deformation mechanism of nanowires. We find that during the plastic deformation of both perfect and defected nanowires, decrease regions of the stress curve are accompanied with stacking faults generation and migration activities, but during stress increase, the structure of the nanowire appears almost unchanged. We also observe that surface defects have obvious influence on the nanowire’s plastic deformation mechanisms. In particular, only two sets of slip planes are found to be active and twins are also observed in the defected nanowire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plate elements are used in many engineering applications. In-plane loads and deformations have significant influence on the vibration characteristics of plate elements. Numerous methods have been developed to quantify the effects of in-plane loads and deformations of individual plate elements with different boundary conditions based on their natural frequencies. However, these developments cannot be applied to the plate elements in a structural system as the natural frequency is a global parameter for the entire structure. This highlights the need for a method to quantify in-plane deformations of plate elements in structural framing systems. Motivated by this gap in knowledge, this research has developed a comprehensive vibration based procedure to quantify in-plane deformation of plate elements in a structural framing system. This procedure with its unique capabilities to capture the influence of load migration, boundary conditions and different tributary areas is presented herein and illustrated through examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, in this paper, the tensile deformation properties of Cu nanowires (NWs) with different pre-existing defects, including single surface defects, surface bi-defects and single internal defects, are systematically studied. In-depth deformation mechanisms of NWs with pre-existing defects are also explored. It is found that Young's modulus is insensitive to different pre-existing defects, but yield strength shows an obvious decrease. Defects are observed influencing greatly on NWs' tensile deformation mechanisms, and playing a role of dislocation sources. Besides of the traditional deformation process dominated by the nucleation and propagation of partial dislocations, the generations of twins, grain boundaries, fivefold deformation twins, hexagonal close-packed (HCP) structure and phase transformation from face-centred cubic (FCC) structure to HCP structure have been triggered by pre-existing defects. It is found that surface defect intends to induce larger influence to yield strength than internal defect. Most importantly, the defect that lies on slip planes exerts larger influence than other defects. As expected, it is also found that the more or longer of the defect, the bigger influence will be induced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.