89 resultados para data quality issues


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper highlights the contemporary disadvantaged position of Indigenous peoples of Australia.∗ It discusses a number of data quality issues on Indigenous data, before examining Indigenous disadvantage across five key areas: (1) education; (2) employment; (3) housing and living conditions; (4) health and wellbeing; and (5) crime and justice. Given the call for all governments to implement a framework to overcome Indigenous disadvantage, we recommend that future research begin with an investigation of non-Indigenous attitudes towards, and knowledge of, the position of Indigenous peoples in Australia. This is essential towards developing an understanding of the general public’s current perceptions of Indigenous peoples’ position in Australia, particularly where the development of policies pertaining to Indigenous peoples requires cooperative action and the support of the broader Australian population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a technique for the automated removal of noise from process execution logs. Noise is the result of data quality issues such as logging errors and manifests itself in the form of infrequent process behavior. The proposed technique generates an abstract representation of an event log as an automaton capturing the direct follows relations between event labels. This automaton is then pruned from arcs with low relative frequency and used to remove from the log those events not fitting the automaton, which are identified as outliers. The technique has been extensively evaluated on top of various auto- mated process discovery algorithms using both artificial logs with different levels of noise, as well as a variety of real-life logs. The results show that the technique significantly improves the quality of the discovered process model along fitness, appropriateness and simplicity, without negative effects on generalization. Further, the technique scales well to large and complex logs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National estimates of the prevalence of child abuse-related injuries are obtained from a variety of sectors including welfare, justice, and health resulting in inconsistent estimates across sectors. The International Classification of Diseases (ICD) is used as the international standard for categorising health data and aggregating data for statistical purposes, though there has been limited validation of the quality, completeness or concordance of these data with other sectors. This research study examined the quality of documentation and coding of child abuse recorded in hospital records in Queensland and the concordance of these data with child welfare records. A retrospective medical record review was used to examine the clinical documentation of over 1000 hospitalised injured children from 20 hospitals in Queensland. A data linkage methodology was used to link these records with records in the child welfare database. Cases were sampled from three sub-groups according to the presence of target ICD codes: Definite abuse, Possible abuse, unintentional injury. Less than 2% of cases coded as being unintentional were recoded after review as being possible abuse, and only 5% of cases coded as possible abuse cases were reclassified as unintentional, though there was greater variation in the classification of cases as definite abuse compared to possible abuse. Concordance of health data with child welfare data varied across patient subgroups. This study will inform the development of strategies to improve the quality, consistency and concordance of information between health and welfare agencies to ensure adequate system responses to children at risk of abuse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A substantial body of literature exists identifying factors contributing to under-performing Enterprise Resource Planning systems (ERPs), including poor communication, lack of executive support and user dissatisfaction (Calisir et al., 2009). Of particular interest is Momoh et al.’s (2010) recent review identifying poor data quality (DQ) as one of nine critical factors associated with ERP failure. DQ is central to ERP operating processes, ERP facilitated decision-making and inter-organizational cooperation (Batini et al., 2009). Crucial in ERP contexts is that the integrated, automated, process driven nature of ERP data flows can amplify DQ issues, compounding minor errors as they flow through the system (Haug et al., 2009; Xu et al., 2002). However, the growing appreciation of the importance of DQ in determining ERP success lacks research addressing the relationship between stakeholders’ requirements and perceptions of ERP DQ, perceived data utility and the impact of users’ treatment of data on ERP outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Data reliability issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. Participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data reliability has become an urgent demand. This study aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we propose to design a reputation framework to enhance data reliability and also investigate some critical elements that should be aware of during developing and designing new reputation systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development of a robust and novel prototype to address the data quality problems that relate to the dimension of outlier data. It thoroughly investigates the associated problems with regards to detecting, assessing and determining the severity of the problem of outlier data; and proposes granule-mining based alternative techniques to significantly improve the effectiveness of mining and assessing outlier data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field robots often rely on laser range finders (LRFs) to detect obstacles and navigate autonomously. Despite recent progress in sensing technology and perception algorithms, adverse environmental conditions, such as the presence of smoke, remain a challenging issue for these robots. In this paper, we investigate the possibility to improve laser-based perception applications by anticipating situations when laser data are affected by smoke, using supervised learning and state-of-the-art visual image quality analysis. We propose to train a k-nearest-neighbour (kNN) classifier to recognise situations where a laser scan is likely to be affected by smoke, based on visual data quality features. This method is evaluated experimentally using a mobile robot equipped with LRFs and a visual camera. The strengths and limitations of the technique are identified and discussed, and we show that the method is beneficial if conservative decisions are the most appropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research has developed a framework to improve the effectiveness and efficiency of stakeholder involvement during the early planning stages of residential construction projects, in order to improve many of the quality issues that occur during the construction phases of such projects. A mixed methods approach (survey, interviews and case studies) was employed to collect the required data. It is expected that with development, this framework can bring some significant benefits to future construction projects in terms of reducing rework and wastage, improving timely delivery and avoiding disputes. The research is also anticipated to produce three high impact journal articles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Health Information Exchange (HIE) is an interesting phenomenon. It is a patient centric health and/or medical information management scenario enhanced by integration of Information and Communication Technologies (ICT). While health information systems are repositioning complex system directives, in the wake of the ‘big data’ paradigm, extracting quality information is challenging. It is anticipated that in this talk, ICT enabled healthcare scenarios with big data analytics will be shared. In addition, research and development regarding big data analytics, such as current trends of using these technologies for health care services and critical research challenges when extracting quality of information to improve quality of life will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This program of research linked police and health data collections to investigate the potential benefits for road safety in terms of enhancing the quality of data. This research has important implications for road safety because, although police collected data has historically underpinned efforts in the area, it is known that many road crashes are not reported to police and that these data lack specific injury severity information. This research shows that data linkage provides a more accurate quantification of the severity and prevalence of road crash injuries which is essential for: prioritising funding; targeting interventions; and estimating the burden and cost of road trauma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision-making is such an integral aspect in health care routine that the ability to make the right decisions at crucial moments can lead to patient health improvements. Evidence-based practice, the paradigm used to make those informed decisions, relies on the use of current best evidence from systematic research such as randomized controlled trials. Limitations of the outcomes from randomized controlled trials (RCT), such as “quantity” and “quality” of evidence generated, has lowered healthcare professionals’ confidence in using EBP. An alternate paradigm of Practice-Based Evidence has evolved with the key being evidence drawn from practice settings. Through the use of health information technology, electronic health records (EHR) capture relevant clinical practice “evidence”. A data-driven approach is proposed to capitalize on the benefits of EHR. The issues of data privacy, security and integrity are diminished by an information accountability concept. Data warehouse architecture completes the data-driven approach by integrating health data from multi-source systems, unique within the healthcare environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over recent years, the focus in road safety has shifted towards a greater understanding of road crash serious injuries in addition to fatalities. Police reported crash data are often the primary source of crash information; however, the definition of serious injury within these data is not consistent across jurisdictions and may not be accurately operationalised. This study examined the linkage of police-reported road crash data with hospital data to explore the potential for linked data to enhance the quantification of serious injury. Data from the Queensland Road Crash Database (QRCD), the Queensland Hospital Admitted Patients Data Collection (QHAPDC), Emergency Department Information System (EDIS), and the Queensland Injury Surveillance Unit (QISU) for the year 2009 were linked. Nine different estimates of serious road crash injury were produced. Results showed that there was a large amount of variation in the estimates of the number and profile of serious road crash injuries depending on the definition or measure used. The results also showed that as the definition of serious injury becomes more precise the vulnerable road users become more prominent. These results have major implications in terms of how serious injuries are identified for reporting purposes. Depending on the definitions used, the calculation of cost and understanding of the impact of serious injuries would vary greatly. This study has shown how data linkage can be used to investigate issues of data quality. It has also demonstrated the potential improvements to the understanding of the road safety problem, particularly serious injury, by conducting data linkage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper explores the ‘journey’ along the ‘never ending quality road’ undertaken by the Hong Kong Housing Department over the last 15 years. It briefly covers the early history of public housing in Hong Kong, the catalytic effect brought about by the discovery of the infamous 26 sub-standard blocks in the mid-80s leading to the subsequent major improvements to process control and structural quality in the period 1985-1990. It then moves onto a discussion of initiatives taken since 1991, including the formation of the List of Building Contractors and the implementation of the Performance Assessment Scoring System (PASS). The paper ends with a discussion of the current status of quality issues within the Department and touches on future initiatives being developed to further enhance the quality of public housing in Hong Kong.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Business Process Management (BPM) has emerged as a popular management approach in both Information Technology (IT) and management practice. While there has been much research on business process modelling and the BPM life cycle, there has been little attention given to managing the quality of a business process during its life cycle. This study addresses this gap by providing a framework for organisations to manage the quality of business processes during different phases of the BPM life cycle. This study employs a multi-method research design which is based on the design science approach and the action research methodology. During the design science phase, the artifacts to model a quality-aware business process were developed. These artifacts were then evaluated through three cycles of action research which were conducted within three large Australian-based organisations. This study contributes to the body of BPM knowledge in a number of ways. Firstly, it presents a quality-aware BPM life cycle that provides a framework on how quality can be incorporated into a business process and subsequently managed during the BPM life cycle. Secondly, it provides a framework to capture and model quality requirements of a business process as a set of measurable elements that can be incorporated into the business process model. Finally, it proposes a novel root cause analysis technique for determining the causes of quality issues within business processes.