336 resultados para damage mechanisms
Resumo:
Cisplatin (cis-diamminedichloroplatinum (II)), is a platinum based chemotherapeutic employed in the clinic to treat patients with lung, ovarian, colorectal or head and neck cancers. Cisplatin acts to induce tumor cell death via multiple mechanisms. The best characterized mode of action is through irreversible DNA cross-links which activate DNA damage signals leading to cell death via the intrinsic mitochondrial apoptosis pathway. However, the primary issue with cisplatin is that while patients initially respond favorably, sustained cisplatin therapy often yields chemoresistance resulting in therapeutic failure. In this chapter, we review the DNA damage and repair pathways that contribute to cisplatin resistance. We also examine the cellular implications of cisplatin resistance that may lead to selection of subpopulations of cells within a tumor. In better understanding the mechanisms conferring cisplatin resistance, novel targets may be identified to restore drug sensitivity.
Resumo:
Both a systemic inflammatory response as well as DNA damage has been observed following exhaustive endurance exercise. Hypothetically, exercise-induced DNA damage might either be a consequence of inflammatory processes or causally involved in inflammation and immunological alterations after strenuous prolonged exercise (e.g. by inducing lymphocyte apoptosis and lymphocytopenia). Nevertheless, up to now only few studies have addressed this issue and there is hardly any evidence regarding a direct relationship between DNA or chromosomal damage and inflammatory responses in the context of exercise. The most conclusive picture that emerges from available data is that reactive oxygen and nitrogen species (RONS) appear to be the key effectors which link inflammation with DNA damage. Considering the time-courses of inflammatory and oxidative stress responses on the one hand and DNA effects on the other the lack of correlations between these responses might also be explained by too short observation periods. This review summarizes and discusses the recent findings on this topic. Furthermore, data from our own study are presented that aimed to verify potential associations between several endpoints of genome stability and inflammatory, immune-endocrine and muscle damage parameters in competitors of an Ironman triathlon until 19 days into recovery. The current results indicate that DNA effects in lymphocytes are not responsible for exercise-induced inflammatory responses. Furthermore, this investigation shows that inflammatory processes, vice versa, do not promote DNA damage, neither directly nor via an increased formation of RONS derived from inflammatory cells. Oxidative DNA damage might have been counteracted by training- and exercise-induced antioxidant responses. However, further studies are needed that combine advanced -omics based techniques (transcriptomics, proteomics) with state-of-the-art biochemical biomarkers to gain more insights into the underlying mechanisms.
Resumo:
Regular moderate physical activity reduces the risk of several noncommunicable diseases. At the same time, evidence exists for oxidative stress resulting from acute and strenuous exercise by enhanced formation of reactive oxygen and nitrogen species, which may lead to oxidatively modified lipids, proteins, and possibly negative effects on DNA stability. The limited data on ultraendurance events such as an Ironman triathlon show no persistent DNA damage after the events. However, when considering the effects of endurance exercise comparable to a (half) marathon or a short triathlon distance, no clear conclusions could be drawn. In order to clarify which components of exercise participation, such as duration, intensity, frequency, or training status of the subjects, have an impact on DNA stability, more information is clearly needed that combines the measurement of DNA damage, gene expression, and DNA repair mechanisms before, during, and after exercise of differing intensities and durations.
Resumo:
This thesis examines the extent of which economic instruments can be used to minimise environmental damage in the coastal and marine environments, and the role of offsets to compensate for residual damage. Economic principles are used to review current command and control systems, potential incentive based mechanisms, and the development of appropriate offsets. Implementing offsets in the marine environment has a number of challenges, so alternative approaches may be necessary. The study finds that offsets in areas remote from the initial impact, or even to protect different species, may be acceptable provided they result in greater conservation benefits than the standard like-for-like offset. This study is particularly relevant for the design of offsets in the coastal and marine environments where there is limited scope for like-for-like offsets.
Resumo:
Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.
Resumo:
Due to the advent of varied types of masonry systems a comprehensive failure mechanism of masonry essential for the understanding of its behaviour is impossible to be determined from experimental testing. As masonry is predominantly used in wall structures a biaxial stress state dominates its failure mechanism. Biaxial testing will therefore be necessary for each type of masonry, which is expensive and time consuming. A computational method would be advantageous; however masonry is complex to model which requires advanced computational modelling methods. This thesis has formulated a damage mechanics inspired modelling method and has shown that the method effectively determines the failure mechanisms and deformation characteristics of masonry under biaxial states of loading.
Resumo:
Epigenetics is the study of heritable changes in gene expression that are not the result of genetic alterations. These changes include DNA methylation, histone modifications, or indeed microRNA expression. Chromatin is a tightly compacted DNA–protein complex that allows approximately two meters of DNA to be packaged inside a cell, only a few micrometers across. Although the resulting DNA structure is very stable, it is not very amiable to DNA-dependent processes, so mechanisms have to exist to allow processes such as transcription, replication, and DNA repair to occur. This chapter will look at how a cell responds to and deals with genomic instability at the epigenetic level and highlight how critical chromatin remodeling is for correct DNA repair and cell survival following DNA damage. This chapter will initially look at the DNA repair pathways that function in human cells and then at how the repair of DNA damage is controlled by epigenetics.
Resumo:
Bomb attacks carried out by terrorists, targeting high occupancy buildings, have become increasingly common in recent times. Large numbers of casualties and property damage result from overpressure of the blast followed by failing of structural elements. Understanding the blast response of multi-storey buildings and evaluating their remaining life have therefore become important. Response and damage analysis of single structural components, such as columns or slabs, to explosive loads have been examined in the literature, but the studies on blast response and damage analysis of structural frames in multi-storey buildings is limited and this is necessary for assessing the vulnerability of them. This paper investigates the blast response and damage evaluation of reinforced concrete (RC) frames, designed for normal gravity loads, in order to evaluate their remaining life. Numerical modelling and analysis were carried out using the explicit finite element software, LS DYNA. The modelling and analysis takes into consideration reinforcement details together and material performance under higher strain rates. Damage indices for columns are calculated based on their residual and original capacities. Numerical results generated in the can be used to identify relationships between the blast load parameters and the column damage. Damage index curve will provide a simple means for assessing the damage to a typical multi-storey building RC frame under an external bomb circumstance.
Resumo:
Health Information Systems (HIS) make extensive use of Information and Communication Technologies (ICT). The use of ICT aids in improving the quality and efficiency of healthcare services by making healthcare information available at the point of care (Goldstein, Groen, Ponkshe, and Wine, 2007). The increasing availability of healthcare data presents security and privacy issues which have not yet been fully addressed (Liu, Caelli, May, and Croll, 2008a). Healthcare organisations have to comply with the security and privacy requirements stated in laws, regulations and ethical standards, while managing healthcare information. Protecting the security and privacy of healthcare information is a very complex task (Liu, May, Caelli and Croll, 2008b). In order to simplify the complexity of providing security and privacy in HIS, appropriate information security services and mechanisms have to be implemented. Solutions at the application layer have already been implemented in HIS such as those existing in healthcare web services (Weaver et al., 2003). In addition, Discretionary Access Control (DAC) is the most commonly implemented access control model to restrict access to resources at the OS layer (Liu, Caelli, May, Croll and Henricksen, 2007a). Nevertheless, the combination of application security mechanisms and DAC at the OS layer has been stated to be insufficient in satisfying security requirements in computer systems (Loscocco et al., 1998). This thesis investigates the feasibility of implementing Security Enhanced Linux (SELinux) to enforce a Role-Based Access Control (RBAC) policy to help protect resources at the Operating System (OS) layer. SELinux provides Mandatory Access Control (MAC) mechanisms at the OS layer. These mechanisms can contain the damage from compromised applications and restrict access to resources according to the security policy implemented. The main contribution of this research is to provide a modern framework to implement and manage SELinux in HIS. The proposed framework introduces SELinux Profiles to restrict access permissions over the system resources to authorised users. The feasibility of using SELinux profiles in HIS was demonstrated through the creation of a prototype, which was submitted to various attack scenarios. The prototype was also subjected to testing during emergency scenarios, where changes to the security policies had to be made on the spot. Attack scenarios were based on vulnerabilities common at the application layer. SELinux demonstrated that it could effectively contain attacks at the application layer and provide adequate flexibility during emergency situations. However, even with the use of current tools, the development of SELinux policies can be very complex. Further research has to be made in order to simplify the management of SELinux policies and access permissions. In addition, SELinux related technologies, such as the Policy Management Server by Tresys Technologies, need to be researched in order to provide solutions at different layers of protection.
Resumo:
Research has suggested that corporate venturing is crucial to strategic renewal and firm performance, yet scholars still debate the appropriate organizational configurations to facilitate the creation of new businesses in existing organizations. Our study investigates the effectiveness of combining structural differentiation with formal and informal organizational as well as top management team integration mechanisms in establishing an appropriate context for venturing activities. Our findings suggest that structural differentiation has a positive effect on corporate venturing. In addition, our study indicates that a shared vision has a positive effect on venturing in a structurally differentiated context. Socially integrated senior teams and cross-functional interfaces, however, are ineffective integration mechanisms for establishing linkages across differentiated units and for successfully pursuing corporate venturing.
Resumo:
Vibration based damage identification methods examine the changes in primary modal parameters or quantities derived from modal parameters. As one method may have advantages over the other under some circumstances, a multi-criteria approach is proposed. Case studies are conducted separately on beam, plate and plate-on-beam structures. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on flexibility and strain energy changes before and after damage are obtained and used as the indices for the assessment of the state of structural health. Results show that the proposed multi-criteria method is effective in damage identification in these structures.
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
This paper uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridge. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change before and after damage are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of proposed structure with six damage scenarios. It is concluded that the modal strain energy method is competent for application on multiple-girder composite bridge, as evidenced through the example treated in this paper.