231 resultados para computational complexity
Resumo:
The authors present a qualitative and quantitative comparison of various similarity measures that form the kernel of common area-based stereo-matching systems. The authors compare classical difference and correlation measures as well as nonparametric measures based on the rank and census transforms for a number of outdoor images. For robotic applications, important considerations include robustness to image defects such as intensity variation and noise, the number of false matches, and computational complexity. In the absence of ground truth data, the authors compare the matching techniques based on the percentage of matches that pass the left-right consistency test. The authors also evaluate the discriminatory power of several match validity measures that are reported in the literature for eliminating false matches and for estimating match confidence. For guidance applications, it is essential to have and estimate of confidence in the three-dimensional points generated by stereo vision. Finally, a new validity measure, the rank constraint, is introduced that is capable of resolving ambiguous matches for rank transform-based matching.
Resumo:
Grouping users in social networks is an important process that improves matching and recommendation activities in social networks. The data mining methods of clustering can be used in grouping the users in social networks. However, the existing general purpose clustering algorithms perform poorly on the social network data due to the special nature of users' data in social networks. One main reason is the constraints that need to be considered in grouping users in social networks. Another reason is the need of capturing large amount of information about users which imposes computational complexity to an algorithm. In this paper, we propose a scalable and effective constraint-based clustering algorithm based on a global similarity measure that takes into consideration the users' constraints and their importance in social networks. Each constraint's importance is calculated based on the occurrence of this constraint in the dataset. Performance of the algorithm is demonstrated on a dataset obtained from an online dating website using internal and external evaluation measures. Results show that the proposed algorithm is able to increases the accuracy of matching users in social networks by 10% in comparison to other algorithms.
Resumo:
Predicate encryption (PE) is a new primitive which supports exible control over access to encrypted data. In PE schemes, users' decryption keys are associated with predicates f and ciphertexts encode attributes a that are specified during the encryption procedure. A user can successfully decrypt if and only if f(a) = 1. In this thesis, we will investigate several properties that are crucial to PE. We focus on expressiveness of PE, Revocable PE and Hierarchical PE (HPE) with forward security. For all proposed systems, we provide a security model and analysis using the widely accepted computational complexity approach. Our first contribution is to explore the expressiveness of PE. Existing PE supports a wide class of predicates such as conjunctions of equality, comparison and subset queries, disjunctions of equality queries, and more generally, arbitrary combinations of conjunctive and disjunctive equality queries. We advance PE to evaluate more expressive predicates, e.g., disjunctive comparison or disjunctive subset queries. Such expressiveness is achieved at the cost of computational and space overhead. To improve the performance, we appropriately revise the PE to reduce the computational and space cost. Furthermore, we propose a heuristic method to reduce disjunctions in the predicates. Our schemes are proved in the standard model. We then introduce the concept of Revocable Predicate Encryption (RPE), which extends the previous PE setting with revocation support: private keys can be used to decrypt an RPE ciphertext only if they match the decryption policy (defined via attributes encoded into the ciphertext and predicates associated with private keys) and were not revoked by the time the ciphertext was created. We propose two RPE schemes. Our first scheme, termed Attribute- Hiding RPE (AH-RPE), offers attribute-hiding, which is the standard PE property. Our second scheme, termed Full-Hiding RPE (FH-RPE), offers even stronger privacy guarantees, i.e., apart from possessing the Attribute-Hiding property, the scheme also ensures that no information about revoked users is leaked from a given ciphertext. The proposed schemes are also proved to be secure under well established assumptions in the standard model. Secrecy of decryption keys is an important pre-requisite for security of (H)PE and compromised private keys must be immediately replaced. The notion of Forward Security (FS) reduces damage from compromised keys by guaranteeing confidentiality of messages that were encrypted prior to the compromise event. We present the first Forward-Secure Hierarchical Predicate Encryption (FS-HPE) that is proved secure in the standard model. Our FS-HPE scheme offers some desirable properties: time-independent delegation of predicates (to support dynamic behavior for delegation of decrypting rights to new users), local update for users' private keys (i.e., no master authority needs to be contacted), forward security, and the scheme's encryption process does not require knowledge of predicates at any level including when those predicates join the hierarchy.
Resumo:
This paper evaluates the efficiency of a number of popular corpus-based distributional models in performing discovery on very large document sets, including online collections. Literature-based discovery is the process of identifying previously unknown connections from text, often published literature, that could lead to the development of new techniques or technologies. Literature-based discovery has attracted growing research interest ever since Swanson's serendipitous discovery of the therapeutic effects of fish oil on Raynaud's disease in 1986. The successful application of distributional models in automating the identification of indirect associations underpinning literature-based discovery has been heavily demonstrated in the medical domain. However, we wish to investigate the computational complexity of distributional models for literature-based discovery on much larger document collections, as they may provide computationally tractable solutions to tasks including, predicting future disruptive innovations. In this paper we perform a computational complexity analysis on four successful corpus-based distributional models to evaluate their fit for such tasks. Our results indicate that corpus-based distributional models that store their representations in fixed dimensions provide superior efficiency on literature-based discovery tasks.
Resumo:
Efficient and effective feature detection and representation is an important consideration when processing videos, and a large number of applications such as motion analysis, 3D scene understanding, tracking etc. depend on this. Amongst several feature description methods, local features are becoming increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational complexity, their performance is still too limited for real world applications. Furthermore, rapid increases in the uptake of mobile devices has increased the demand for algorithms that can run with reduced memory and computational requirements. In this paper we propose a semi binary based feature detectordescriptor based on the BRISK detector, which can detect and represent videos with significantly reduced computational requirements, while achieving comparable performance to the state of the art spatio-temporal feature descriptors. First, the BRISK feature detector is applied on a frame by frame basis to detect interest points, then the detected key points are compared against consecutive frames for significant motion. Key points with significant motion are encoded with the BRISK descriptor in the spatial domain and Motion Boundary Histogram in the temporal domain. This descriptor is not only lightweight but also has lower memory requirements because of the binary nature of the BRISK descriptor, allowing the possibility of applications using hand held devices.We evaluate the combination of detectordescriptor performance in the context of action classification with a standard, popular bag-of-features with SVM framework. Experiments are carried out on two popular datasets with varying complexity and we demonstrate comparable performance with other descriptors with reduced computational complexity.
Resumo:
We examine the security of the 64-bit lightweight block cipher PRESENT-80 against related-key differential attacks. With a computer search we are able to prove that for any related-key differential characteristic on full-round PRESENT-80, the probability of the characteristic only in the 64-bit state is not higher than 2−64. To overcome the exponential (in the state and key sizes) computational complexity of the search we use truncated differences, however as the key schedule is not nibble oriented, we switch to actual differences and apply early abort techniques to prune the tree-based search. With a new method called extended split approach we are able to make the whole search feasible and we implement and run it in real time. Our approach targets the PRESENT-80 cipher however,with small modifications can be reused for other lightweight ciphers as well.
Resumo:
The sum of k mins protocol was proposed by Hopper and Blum as a protocol for secure human identification. The goal of the protocol is to let an unaided human securely authenticate to a remote server. The main ingredient of the protocol is the sum of k mins problem. The difficulty of solving this problem determines the security of the protocol. In this paper, we show that the sum of k mins problem is NP-Complete and W[1]-Hard. This latter notion relates to fixed parameter intractability. We also discuss the use of the sum of k mins protocol in resource-constrained devices.
Resumo:
Behavioral models capture operational principles of real-world or designed systems. Formally, each behavioral model defines the state space of a system, i.e., its states and the principles of state transitions. Such a model is the basis for analysis of the system’s properties. In practice, state spaces of systems are immense, which results in huge computational complexity for their analysis. Behavioral models are typically described as executable graphs, whose execution semantics encodes a state space. The structure theory of behavioral models studies the relations between the structure of a model and the properties of its state space. In this article, we use the connectivity property of graphs to achieve an efficient and extensive discovery of the compositional structure of behavioral models; behavioral models get stepwise decomposed into components with clear structural characteristics and inter-component relations. At each decomposition step, the discovered compositional structure of a model is used for reasoning on properties of the whole state space of the system. The approach is exemplified by means of a concrete behavioral model and verification criterion. That is, we analyze workflow nets, a well-established tool for modeling behavior of distributed systems, with respect to the soundness property, a basic correctness property of workflow nets. Stepwise verification allows the detection of violations of the soundness property by inspecting small portions of a model, thereby considerably reducing the amount of work to be done to perform soundness checks. Besides formal results, we also report on findings from applying our approach to an industry model collection.
Resumo:
The television quiz program Letters and Numbers, broadcast on the SBS network, has recently become quite popular in Australia. This paper explores the potential of this game to illustrate and engage student interest in a range of fundamental concepts of computer science and mathematics. The Numbers Game in particular has a rich mathematical structure whose analysis and solution involves concepts of counting and problem size, discrete (tree) structures, language theory, recurrences, computational complexity, and even advanced memory management. This paper presents an analysis of these games and their teaching applications, and presents some initial results of use in student assignments.
Resumo:
This thesis was a step forward in extracting valuable features from human's movement behaviour in terms of space utilisation based on Media-Access-Control data. This research offered a low-cost and less computational complexity approach compared to existing human's movement tracking methods. This research was successfully applied in QUT's Gardens Point campus and can be scaled to bigger environments and societies. Extractable information from human's movement by this approach can add a significant value to studying human's movement behaviour, enhancing future urban and interior design, improving crowd safety and evacuation plans.
Resumo:
In this paper, the security of two recent RFID mutual authentication protocols are investigated. The first protocol is a scheme proposed by Huang et al. [7] and the second one by Huang, Lin and Li [6]. We show that these two protocols have several weaknesses. In Huang et al.’s scheme, an adversary can determine the 32-bit secret password with a probability of 2−2 , and in Huang-Lin-Li scheme, a passive adversary can recognize a target tag with a success probability of 1−2−4 and an active adversary can determine all 32 bits of Access password with success probability of 2−4 . The computational complexity of these attacks is negligible.
Resumo:
The development and maintenance of large and complex ontologies are often time-consuming and error-prone. Thus, automated ontology learning and revision have attracted intensive research interest. In data-centric applications where ontologies are designed or automatically learnt from the data, when new data instances are added that contradict to the ontology, it is often desirable to incrementally revise the ontology according to the added data. This problem can be intuitively formulated as the problem of revising a TBox by an ABox. In this paper we introduce a model-theoretic approach to such an ontology revision problem by using a novel alternative semantic characterisation of DL-Lite ontologies. We show some desired properties for our ontology revision. We have also developed an algorithm for reasoning with the ontology revision without computing the revision result. The algorithm is efficient as its computational complexity is in coNP in the worst case and in PTIME when the size of the new data is bounded.
Resumo:
We propose a new information-theoretic metric, the symmetric Kullback-Leibler divergence (sKL-divergence), to measure the difference between two water diffusivity profiles in high angular resolution diffusion imaging (HARDI). Water diffusivity profiles are modeled as probability density functions on the unit sphere, and the sKL-divergence is computed from a spherical harmonic series, which greatly reduces computational complexity. Adjustment of the orientation of diffusivity functions is essential when the image is being warped, so we propose a fast algorithm to determine the principal direction of diffusivity functions using principal component analysis (PCA). We compare sKL-divergence with other inner-product based cost functions using synthetic samples and real HARDI data, and show that the sKL-divergence is highly sensitive in detecting small differences between two diffusivity profiles and therefore shows promise for applications in the nonlinear registration and multisubject statistical analysis of HARDI data.
Resumo:
A decision-theoretic framework is proposed for designing sequential dose-finding trials with multiple outcomes. The optimal strategy is solvable theoretically via backward induction. However, for dose-finding studies involving k doses, the computational complexity is the same as the bandit problem with k-dependent arms, which is computationally prohibitive. We therefore provide two computationally compromised strategies, which is of practical interest as the computational complexity is greatly reduced: one is closely related to the continual reassessment method (CRM), and the other improves CRM and approximates to the optimal strategy better. In particular, we present the framework for phase I/II trials with multiple outcomes. Applications to a pediatric HIV trial and a cancer chemotherapy trial are given to illustrate the proposed approach. Simulation results for the two trials show that the computationally compromised strategy can perform well and appear to be ethical for allocating patients. The proposed framework can provide better approximation to the optimal strategy if more extensive computing is available.
Resumo:
This article develops a method for analysis of growth data with multiple recaptures when the initial ages for all individuals are unknown. The existing approaches either impute the initial ages or model them as random effects. Assumptions about the initial age are not verifiable because all the initial ages are unknown. We present an alternative approach that treats all the lengths including the length at first capture as correlated repeated measures for each individual. Optimal estimating equations are developed using the generalized estimating equations approach that only requires the first two moment assumptions. Explicit expressions for estimation of both mean growth parameters and variance components are given to minimize the computational complexity. Simulation studies indicate that the proposed method works well. Two real data sets are analyzed for illustration, one from whelks (Dicathais aegaota) and the other from southern rock lobster (Jasus edwardsii) in South Australia.