66 resultados para coastal erosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential impacts of plantation forestry practices on soil organic carbon and Fe available to microorganisms were investigated in a subtropical coastal catchment. The impacts of harvesting or replanting were largely limited to the soil top layer (0–10 cm depth). The thirty-year-old Pinus plantation showed low soil moisture content (Wc) and relatively high levels of soil total organic carbon (TOC). Harvesting and replanting increased soil Wc but reduced TOC levels. Mean dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased in harvested or replanted soils, but such changes were not statistically significant (P > 0.05). Total dithionite-citrate and aqua regia-extractable Fe did not respond to forestry practices, but acid ammonium oxalate and pyrophosphate-extractable, bioavailable Fe decreased markedly after harvesting or replanting. Numbers of heterotrophic bacteria were significantly correlated with DOC levels (P < 0.05), whereas Fe-reducing bacteria and S-bacteria detected using laboratory cultivation techniques did not show strong correlation with either soil DOC or Fe content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the host-specificity and -sensitivity of human- and bovine-specific adenoviruses (HS-AVs and BS-AVs) were evaluated by testing wastewater/fecal samples from various animal species in Southeast, Queensland, Australia. The overall specificity and sensitivity of the HS-AVs marker were 1.0 and 0.78, respectively. These figures for the BS-AVs were 1.0 and 0.73, respectively. Twenty environmental water samples were colleted during wet conditions and 20 samples were colleted during dry conditions from the Maroochy Coastal River and tested for the presence of fecal indicator bacteria (FIB), host-specific viral markers, zoonotic bacterial and protozoan pathogens using PCR/qPCR. The concentrations of FIB in water samples collected after wet conditions were generally higher compared to dry conditions. HS-AVs was detected in 20% water samples colleted during wet conditions and whereas BS-AVs was detected in both wet (i.e., 10%) and dry (i.e., 10%) conditions. Both, C. jejuni mapA and Salmonella invA genes were detected in 10% and 10% of samples, respectively collected during dry conditions. The concentrations of Salmonella invA ranged between 3.5 × 102 to 4.3 × 102 genomic copies per 500 ml of water G. lamblia β-giardin gene was detected only in one sample (5%) collected during the dry conditions. Weak or significant correlations were observed between FIB with viral markers and zoonotic pathogens. However, during dry conditions, no significant correlations were observed between FIB concentrations with viral markers and zoonotic pathogens. The prevalence of HS-AVs in samples collected from the study river suggests that the quality of water is affected by human fecal pollution and as well as bovine fecal pollution. The results suggest that HS-AVs and BS-AVs detection using PCR could be a useful tool for the identification of human sourced fecal pollution in coastal waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autonomous Underwater Vehicles (AUVs) are revolutionizing oceanography through their versatility, autonomy and endurance. However, they are still an underutilized technology. For coastal operations, the ability to track a certain feature is of interest to ocean scientists. Adaptive and predictive path planning requires frequent communication with significant data transfer. Currently, most AUVs rely on satellite phones as their primary communication. This communication protocol is expensive and slow. To reduce communication costs and provide adequate data transfer rates, we present a hardware modification along with a software system that provides an alternative robust disruption- tolerant communications framework enabling cost-effective glider operation in coastal regions. The framework is specifically designed to address multi-sensor deployments. We provide a system overview and present testing and coverage data for the network. Additionally, we include an application of ocean-model driven trajectory design, which can benefit from the use of this network and communication system. Simulation and implementation results are presented for single and multiple vehicle deployments. The presented combination of infrastructure, software development and deployment experience brings us closer to the goal of providing a reliable and cost-effective data transfer framework to enable real-time, optimal trajectory design, based on ocean model predictions, to gather in situ measurements of interesting and evolving ocean features and phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile sensor platforms such as Autonomous Underwater Vehicles (AUVs) and robotic surface vessels, combined with static moored sensors compose a diverse sensor network that is able to provide macroscopic environmental analysis tool for ocean researchers. Working as a cohesive networked unit, the static buoys are always online, and provide insight as to the time and locations where a federated, mobile robot team should be deployed to effectively perform large scale spatiotemporal sampling on demand. Such a system can provide pertinent in situ measurements to marine biologists whom can then advise policy makers on critical environmental issues. This poster presents recent field deployment activity of AUVs demonstrating the effectiveness of our embedded communication network infrastructure throughout southern California coastal waters. We also report on progress towards real-time, web-streaming data from the multiple sampling locations and mobile sensor platforms. Static monitoring sites included in this presentation detail the network nodes positioned at Redondo Beach and Marina Del Ray. One of the deployed mobile sensors highlighted here are autonomous Slocum gliders. These nodes operate in the open ocean for periods as long as one month. The gliders are connected to the network via a Freewave radio modem network composed of multiple coastal base-stations. This increases the efficiency of deployment missions by reducing operational expenses via reduced reliability on satellite phones for communication, as well as increasing the rate and amount of data that can be transferred. Another mobile sensor platform presented in this study are the autonomous robotic boats. These platforms are utilized for harbor and littoral zone studies, and are capable of performing multi-robot coordination while observing known communication constraints. All of these pieces fit together to present an overview of ongoing collaborative work to develop an autonomous, region-wide, coastal environmental observation and monitoring sensor network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global warming is already threatening many animal and plant communities worldwide, however, the effect of climate change on bat populations is poorly known. Understanding the factors influencing the survival of bats is crucial to their conservation, and this cannot be achieved solely by modern ecological studies. Palaeoecological investigations provide a perspective over a much longer temporal scale, allowing the understanding of the dynamic patterns that shaped the distribution of modern taxa. In this study twelve microchiropteran fossil assemblages from Mount Etna, central-eastern Queensland, ranging in age from more than 500,000 years to the present day, were investigated. The aim was to assess the responses of insectivorous bats to Quaternary environmental changes, including climatic fluctuations and recent anthropogenic impacts. In particular, this investigation focussed on the effects of increasing late Pleistocene aridity, the subsequent retraction of rainforest habitat, and the impact of cave mining following European settlement at Mount Etna. A thorough examination of the dental morphology of all available extant Australian bat taxa was conducted in order to identify the fossil taxa prior to their analysis in term of species richness and composition. This detailed odontological work provided new diagnostic dental characters for eighteen species and one genus. It also provided additional useful dental characters for three species and seven genera. This odontological analysis allowed the identification of fifteen fossil bat taxa from the Mount Etna deposits, all being representatives of extant bats, and included ten taxa identified to the species level (i.e., Macroderma gigas, Hipposideros semoni, Rhinolophus megaphyllus, Miniopterus schreibersii, Miniopterus australis, Scoteanax rueppellii, Chalinolobus gouldii, Chalinolobus dwyeri, Chalinolobus nigrogriseus and Vespadelus troughtoni) and five taxa identified to the generic level (i.e., Mormopterus, Taphozous, Nyctophilus, Scotorepens and Vespadelus). Palaeoecological analysis of the fossil taxa revealed that, unlike the non-volant mammal taxa, bats have remained essentially stable in terms of species diversity and community membership between the mid-Pleistocene rainforest habitat and the mesic habitat that occurs today in the region. The single major exception is Hipposideros semoni, which went locally extinct at Mount Etna. Additionally, while intensive mining operations resulted in the abandonment of at least one cave that served as a maternity roost in the recent past, the diversity of the Mount Etna bat fauna has not declined since European colonisation. The overall resilience through time of the bat species discussed herein is perhaps due to their unique ecological, behavioural, and physiological characteristics as well as their ability to fly, which have allowed them to successfully adapt to their changing environment. This study highlights the importance of palaeoecological analyses as a tool to gain an understanding of how bats have responded to environmental change in the past and provides valuable information for the conservation of threatened modern species, such as H. semoni.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron (Fe) biogeochemistry is potentially of environmental significance in plantation-forested, subtropical coastal ecosystems where soil disturbance and seasonal water logging may lead to elevation of Fe mobilization and associated water quality deterioration. Using wet-chemical extraction and laboratory cultivation, we examined the occurrence of Fe forms and associated bacterial populations in diverse soils of a representative subtropical Australian coastal catchment (Poona Creek). Total reactive Fe was abundant throughout 0e30 cm soil cores, consisting primarily of crystalline forms in well-drained sand soils and water-logged loam soils, whereas in water-logged, low clay soils, over half of total reactive Fe was present in poorly-crystalline forms due to organic and inorganic complexation, respectively. Forestry practices such as plantation clear-felling and replanting, seasonal water logging and mineral soil properties significantly impacted soil organic carbon (C), potentially-bioavailable Fe pools and densities of S-, but not Fe-, bacterial populations. Bacterial Fe(III) reduction and abiotic Fe(II) oxidation, as well as chemolithotrophic S oxidation and aerobic, heterotrophic respiration were integral to catchment terrestrial FeeC cycling. This work demonstrates bacterial involvement in terrestrial Fe cycling in a subtropical coastal circumneutral-pH ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blooms of the toxic cyanobacterium majuscula Lyngbya in the coastal waters of southeast Queensland have caused adverse impacts on both environmental health and human health, and on local economies such as fishing and tourism. A number of studies have confirmed that the main limiting nutrients (“nutrients of concern”) that contribute to these blooms area Fe, DOC, N, P and also pH. This study is conducted to establish the distribution of these parameters in a typical southeast Queensland coastal setting. The study maps the geochemistry of shallow groundwater in the mainland Pumicestone catchment with an emphasis on the nutrients of concern to understand how these nutrients relate to aquifer materials, landuse and anthropogenic activities. The results of the study form a GIS information layer which will be incorporated into a larger GIS model being produced by Queensland Department of Environment and Resource Management (DERM) to support landuse management to avoid/minimize blooms of Lyngbya in Moreton Bay, southeast Queensland, and other similar settings. A total of 38 boreholes were established in the mainland Pumicestone region and four sampling rounds of groundwater carried out in both dry and wet conditions. These groundwater samples were measured in the field for physico-chemical parameters, and in the laboratory analyses for the nutrients of concern, and other major and minor ions. Aquifer materials were confirmed using the Geological Survey of Queensland digital geology map, and geomaterials were assigned to seven categories which are A (sands), B (silts, sandy silts), C (estuarine mud, silts), D (humid soils), E (alluvium), F (sandstone) and G (other bedrock). The results of the water chemistry were examined by use of the software package AquaChem/AqQA, and divided into six groundwater groups, based on groundwater chemical types and location of boreholes. The type of aquifer material and location, and proximity to waterways was found to be important because they affected physico-chemical properties and concentrations of nutrients of concern and dissolved ions. The analytical results showed that iron concentrations of shallow groundwaters were high due to acid sulfate soils, and also mud and silt, but were lower in sand materials. DOC concentrations of these shallow groundwaters in the sand material were high probably due to rapid infiltration. In addition, DOC concentrations in some boreholes were high because they were installed in organic rich wetlands. The pH values of boreholes were from acidic to near neutral; some boreholes with pH values were low (< 4), showing acid sulfate soils in these boreholes. Concentrations of total nitrogen and total phosphorus of groundwaters were generally low, and the main causes of elevated concentrations of total nitrogen and total phosphorus are largely due to animal and human wastes and tend to be found in localized source areas. Comparison of the relative percentage of nitrogen species (NH3/NH4< Org-N, NO3-N and NO2-N) demonstrated that they could be related to sources such as animal waste, residential and agricultural fertilizers, forest and vegetation, mixed residents and farms, and variable setting and vegetation covers. Total concentrations of dissolved ions in sampling round 3 (dry period) were higher than those in sampling round 2 (wet period) due to both evaporation of groundwater in the dry period and the dilution of rainfall in the wet period. This showed that the highest concentrations of nutrients of concern were due to acid sulfate soils, aquifer materials, landuse and anthropogenic activities and were typically in aquifer materials of E (alluvium) and C (estuarine muds) and locations of Burpengary, Caboolture, and Glass Mountain catchments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated potential palaeoclimate proxies provided by rare earth element (REE) geochemistry in speleothems and in clay mineralogy of cave sediments. Speleothem and sediment samples were collected from a series of cave fill deposits that occurred with rich vertebrate fossil assemblages in and around Mount Etna National Park, Rockhampton (central coastal Queensland). The fossil deposits range from Plio- Pleistocene to Holocene in age (based on uranium/thorium dating) and appear to represent depositional environments ranging from enclosed rainforest to semi-arid grasslands. Therefore, the Mount Etna cave deposits offer the perfect opportunity to test new palaeoclimate tools as they include deposits that span a known significant climate shift on the basis of independent faunal data. The first section of this study investigates the REE distribution of the host limestone to provide baseline geochemistry for subsequent speleothem investigations. The Devonian Mount Etna Beds were found to be more complex than previous literature had documented. The studied limestone massif is overturned, highly recrystallised in parts and consists of numerous allochthonous blocks with different spatial orientations. Despite the complex geologic history of the Mount Etna Beds, Devonian seawater-like REE patterns were recovered in some parts of the limestone and baseline geochemistry was determined for the bulk limestone for comparison with speleothem REE patterns. The second part of the study focused on REE distribution in the karst system and the palaeoclimatic implications of such records. It was found that REEs have a high affinity for calcite surfaces and that REE distributions in speleothems vary between growth bands much more than along growth bands, thus providing a temporal record that may relate to environmental changes. The morphology of different speleothems (i.e., stalactites, stalagmites, and flowstones) has little bearing on REE distributions provided they are not contaminated with particulate fines. Thus, baseline knowledge developed in the study suggested that speleothems were basically comparable for assessing palaeoclimatically controlled variations in REE distributions. Speleothems from rainforest and semi-arid phases were compared and it was found that there are definable differences in REE distribution that can be attributed to climate. In particular during semiarid phases, total REE concentration decreased, LREE became more depleted, Y/Ho increased, La anomalies were more positive and Ce anomalies were more negative. This may reflect more soil development during rainforest phases and more organic particles and colloids, which are known to transport REEs, in karst waters. However, on a finer temporal scale (i.e. growth bands) within speleothems from the same climate regime, no difference was seen. It is suggested that this may be due to inadequate time for soil development changes on the time frames represented by differences in growth band density. The third part of the study was a reconnaissance investigation focused on mineralogy of clay cave sediments, illite/kaolinite ratios in particular, and the potential palaeoclimatic implications of such records. Although the sample distribution was not optimal, the preliminary results suggest that the illite/kaolinite ratio increased during cold and dry intervals, consistent with decreased chemical weathering during those times. The study provides a basic framework for future studies at differing latitudes to further constrain the parameters of the proxy. The identification of such a proxy recorded in cave sediment has broad implications as clay ratios could potentially provide a basic local climate proxy in the absence of fossil faunas and speleothem material. This study suggests that REEs distributed in speleothems may provide information about water throughput and soil formation, thus providing a potential palaeoclimate proxy. It highlights the importance of understanding the host limestone geochemistry and broadens the distribution and potential number of cave field sites as palaeoclimate information no longer relies solely on the presence of fossil faunas and or speleothems. However, additional research is required to better understand the temporal scales required for the proxies to be recognised.