338 resultados para carbon sublimation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organometallic porphyrins with a metal, metalloid or phosphorus fragment directly attached to their carbon framework emerged for the first time in 1976, and these macrocycles have been intensively investigated in the past decade. The present review summarises for the first time all reported examples as well as applications of these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are expected to become the ideal constituent of many technologes, in particular for future generation electronics. This considerable interest is due to their unique electrical and mechanical properties. They show indeed super-high current-carrying capacity, ballistic electron transport and good field-emission properties. Then, these superior features make CNTs the most promising building blocks for electronic devices, as organic solar cells and organic light emitting devices (OLED). By using Focused Ion Beam (FIB) patterning it is possible to a obtain a high control on position, relative distances and diameter of CNTs. The present work shows how to grow three-dimensional architecture made of vertical-aligned CNTs directly on silicon. Thanks to the higher activity of a pre-patterned surface the synthesis process results very quick, cheap and simple. Such large area growths of CNTs could be used in preliminary test for application as electrodes for organic solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled synthesis of carbon nanotubes (CNTs) is highly desirable for nanoelectronic applications. To date, metallic catalyst particles have been deemed unavoidable for the nucleation and growth of any kind of CNTs. Ordered arrays of nanotubes have been obtained by controlled deposition of the metallic catalyst particles. However, the presence of metal species mixed with the CNTs represents a shortcoming for most electronic applications, as metal particles are incompatible with silicon semiconductor technology. In the present paper we report on a metal-catalyst-free synthesis of CNTs, obtained through Ge nanoparticles on a Si(001) surface patterned by nanoindentation. By using acetylene as the carbon feed gas in a low-pressure Chemical Vapor Deposition (CVD) system, multi-walled carbon nanotubes (MWNT) have been observed to arise from the smallest Ge islands. The CNTs and the Ge three-dimensional structures have been analysed by SEM, EDX and AFM in order to assess their elemental features and properties. EDX and SEM results allow confirmation of the absence of any metallic contamination on the surface, indicating that the origin of the CNT growth is due to the Ge nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on a metal-catalyst-free synthesis of carbon nanotubes (CNTs) on a pre-patterned Si(001) surface. Arrays of triangular-shaped holes were created by nanoindentation in specific sites of the sample. After germanium deposition and chemical vapor deposition (CVD) of acetylene, a few CNTs nucleated and grew from germanium nanoparticles. These results illustrate that it is possible to control the growth of CNTs without the use of any metal catalyst. By leading the assembly of Ge nanoparticles with a patterning technique, a precise control over the growth order is also attainable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled syntheses of carbon nanotubes (CNTs) are highly desirable for nanoelectronic applications. To date, metallic catalyst particles have usually been deemed unavoidable for the nucleation and growth of any kind of CNTs. However, the presence of metal species mixed with the CNTs represents a shortcoming for most electronic applications, as metal particles are incompatible with silicon semiconductor technology. Recently it has been shown that it is possible to create nanotubes without the presence of metallic catalysts, by using SIO2, Ge and other non-metallic nanoparticles. Here we report on a metal-catalyst-free synthesis of CNTs, obtained through Ge nano-particles assembled on silicon surfaces previously patterned by Focused Ion Beam and nanoindentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential impacts of plantation forestry practices on soil organic carbon and Fe available to microorganisms were investigated in a subtropical coastal catchment. The impacts of harvesting or replanting were largely limited to the soil top layer (0–10 cm depth). The thirty-year-old Pinus plantation showed low soil moisture content (Wc) and relatively high levels of soil total organic carbon (TOC). Harvesting and replanting increased soil Wc but reduced TOC levels. Mean dissolved organic carbon (DOC) and microbial biomass carbon (MBC) increased in harvested or replanted soils, but such changes were not statistically significant (P > 0.05). Total dithionite-citrate and aqua regia-extractable Fe did not respond to forestry practices, but acid ammonium oxalate and pyrophosphate-extractable, bioavailable Fe decreased markedly after harvesting or replanting. Numbers of heterotrophic bacteria were significantly correlated with DOC levels (P < 0.05), whereas Fe-reducing bacteria and S-bacteria detected using laboratory cultivation techniques did not show strong correlation with either soil DOC or Fe content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of agricultural management practices to store SOC depends on C input level and how far a soil is from its saturation level (i.e. saturation deficit). The C Saturation hypothesis suggests an ultimate soil C stabilization capacity defined by four SOM pools capable of C saturation: (1) non-protected, (2) physically protected, (3) chemically protected and (4) biochemically protected. We tested if C saturation deficit and the amount of added C influenced SOC storage in measurable soil fractions corresponding to the conceptual chemical, physical, biochemical, and non-protected C pools. We added two levels of C-13- labeled residue to soil samples from seven agricultural sites that were either closer to (i.e., A-horizon) or further from (i.e., C-horizon) their C saturation level and incubated them for 2.5 years. Residue-derived C stabilization was, in most sites, directly related to C saturation deficit but mechanisms of C stabilization differed between the chemically and biochemically protected pools. The physically protected C pool showed a varied effect of C saturation deficit on C-13 stabilization, due to opposite behavior of the POM and mineral fractions. We found distinct behavior between unaggregated and aggregated mineral-associated fractions emphasizing the mechanistic difference between the chemically and physically protected C-pools. To accurately predict SOC dynamics and stabilization, C Saturation of soil C pools, particularly the chemically and biochemically protected pools, should be considered. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although current assessments of agricultural management practices on soil organic C (SOC) dynamics are usually conducted without any explicit consideration of limits to soil C storage, it has been hypothesized that the SOC pool has an upper, or saturation limit with respect to C input levels at steady state. Agricultural management practices that increase C input levels over time produce a new equilibrium soil C content. However, multiple C input level treatments that produce no increase in SOC stocks at equilibrium show that soils have become saturated with respect to C inputs. SOC storage of added C input is a function of how far a soil is from saturation level (saturation deficit) as well as C input level. We tested experimentally if C saturation deficit and varying C input levels influenced soil C stabilization of added C-13 in soils varying in SOC content and physiochemical characteristics. We incubated for 2.5 years soil samples from seven agricultural sites that were closer to (i.e., A-horizon) or further from (i.e., C-horizon) their C saturation limit. At the initiation of the incubations, samples received low or high C input levels of 13 C-labeled wheat straw. We also tested the effect of Ca addition and residue quality on a subset of these soils. We hypothesized that the proportion of C stabilized would be greater in samples with larger C Saturation deficits (i.e., the C- versus A-horizon samples) and that the relative stabilization efficiency (i.e., Delta SCC/Delta C input) would decrease as C input level increased. We found that C saturation deficit influenced the stabilization of added residue at six out of the seven sites and C addition level affected the stabilization of added residue in four sites, corroborating both hypotheses. Increasing Ca availability or decreasing residue quality had no effect on the stabilization of added residue. The amount of new C stabilized was significantly related to C saturation deficit, supporting the hypothesis that C saturation influenced C stabilization at all our sites. Our results suggest that soils with low C contents and degraded lands may have the greatest potential and efficiency to store added C because they are further from their saturation level. (c) 2008 Elsevier Ltd. All rights reserved.