218 resultados para business-intelligence-system
Resumo:
Large communities built around social media on the Internet offer an opportunity to augment analytical customer relationship management (CRM) strategies. The purpose of this paper is to provide direction to advance the conceptual design of business intelligence (BI) systems for implementing CRM strategies. After introducing social CRM and social BI as emerging fields of research, the authors match CRM strategies with a re-engineered conceptual data model of Facebook in order to illustrate the strategic value of these data. Subsequently, the authors design a multi-dimensional data model for social BI and demonstrate its applicability by designing management reports in a retail scenario. Building on the service blueprinting framework, the authors propose a structured research agenda for the emerging field of social BI.
Resumo:
Road networks are a national critical infrastructure. The road assets need to be monitored and maintained efficiently as their conditions deteriorate over time. The condition of one of such assets, road pavement, plays a major role in the road network maintenance programmes. Pavement conditions depend upon many factors such as pavement types, traffic and environmental conditions. This paper presents a data analytics case study for assessing the factors affecting the pavement deflection values measured by the traffic speed deflectometer (TSD) device. The analytics process includes acquisition and integration of data from multiple sources, data pre-processing, mining useful information from them and utilising data mining outputs for knowledge deployment. Data mining techniques are able to show how TSD outputs vary in different roads, traffic and environmental conditions. The generated data mining models map the TSD outputs to some classes and define correction factors for each class.
Resumo:
From 2014, QUT will be adopting a life-cycle approach to Course Quality Assurance informed by a wider and richer range of historic, ‘live’ and ‘predictive’ course data. Key data elements continue to be grouped according to the three broad categories – Viability, Quality of Learning Environment and Outcomes – and are further supported with analytic data presented within tables and charts. Course Quality Assurance and this Consolidated Courses Performance Report illuminate aspects of courses from a data evidence base highlighting the strengths and weaknesses of our courses. It provides the framework and tools to achieve QUT's commitment to excellent graduate outcomes by drawing attention and focus to the quality of our courses and providing a structured approach for bringing about change. Our portfolio of courses forms a vital part of QUT, generating almost $600 million in 2013 alone. Real world courses are fundamental to the strength of the Institution; they are what our many thousands of current and future students are drawn to and invest their time and aspirations in. As we move through a period of some regulatory and deregulatory uncertainty, there is a greater need for QUT to monitor and respond to the needs and expectations of our students. The life-cycle approach, with its rich and predicative data, provides the best source of evidence we have had, to date, to assure the quality of our courses and their relevance in a rapidly changing higher education context.
Resumo:
Supply chains are the core of most industrial networks in which your business operates. They provide the pipeline through which the products and services flow from supplier to customer across each element within the business activity system. Global supply chain relationships have become the basis for many industries with an international network of firms engaged in the supply of goods and services that must be produced to quality standards in one country and delivered just-in-time for assembly or integration into further production processes in another country, frequently many thousands of miles apart. This topic examines the nature of supply chain management and their role in strategic networking. The previous learning tasks have focused on having the correct internal mechanism to effectively manage the inputs and outputs of the organisation by implementing an effective and transparent management system. This learning task takes a look at how management intent strategy and innovation are used to measure the external factors that influence the overall performance of the organisation and develop new strategies by understanding the business cycle and the people within your market environment.
Resumo:
The lack of satisfactory consensus for characterizing the system intelligence and structured analytical decision models has inhibited the developers and practitioners to understand and configure optimum intelligent building systems in a fully informed manner. So far, little research has been conducted in this aspect. This research is designed to identify the key intelligent indicators, and develop analytical models for computing the system intelligence score of smart building system in the intelligent building. The integrated building management system (IBMS) was used as an illustrative example to present a framework. The models presented in this study applied the system intelligence theory, and the conceptual analytical framework. A total of 16 key intelligent indicators were first identified from a general survey. Then, two multi-criteria decision making (MCDM) approaches, the analytic hierarchy process (AHP) and analytic network process (ANP), were employed to develop the system intelligence analytical models. Top intelligence indicators of IBMS include: self-diagnostic of operation deviations; adaptive limiting control algorithm; and, year-round time schedule performance. The developed conceptual framework was then transformed to the practical model. The effectiveness of the practical model was evaluated by means of expert validation. The main contribution of this research is to promote understanding of the intelligent indicators, and to set the foundation for a systemic framework that provide developers and building stakeholders a consolidated inclusive tool for the system intelligence evaluation of the proposed components design configurations.
Resumo:
As part of a decision making process, the controlling process in construction companies can be supported by computer application that provides faster and reliable decision. This paper discusses the development of a knowledge-based decision support system for controlling construction companies’ business performance. The knowledge-base was developed using questionnaire survey and case studies. A questionnaire survey was conducted to identify potential problems that can occur in construction companies as well as the source of the problems and their impact on companies’ performance. Case studies were used to identify and analyse various corrective actions. The result of the study shows that decision support system using knowledge-based management system improves the effectiveness and the efficiency of decision making process for selecting the most appropriate corrective action that can improve construction companies’ performance. The application, which had been developed in this research, was designed to support the process of controlling construction companies’ business performance and to assist young manager in selecting the most optimum corrective actions for the problems related to achieving companies’ objectives. This computer application can be used as a learning tool for identifying potential problems that a construction company faces and the most optimum corrective action.
Resumo:
To meet new challenges of Enterprise Systems that essentially go beyond the initial implementation, contemporary organizations seek employees with business process experts with software skills. Despite a healthy demand from the industry for such expertise, recent studies reveal that most Information Systems (IS) graduates are ill-equipped to meet the challenges of modern organizations. This paper shares insights and experiences from a course that is designed to provide a business process centric view of a market leading Enterprise System. The course, designed for both undergraduate and graduate students, uses two common business processes in a case study that employs both sequential and explorative exercises. Student feedback gained through two longitudinal surveys across two phases of the course demonstrates promising signs of the teaching approach.
Resumo:
The lack of satisfactory consensus for characterizing the system intelligence and structured analytical decision models has inhibited the developers and practitioners to understand and configure optimum intelligent building systems in a fully informed manner. So far, little research has been conducted in this aspect. This research is designed to identify the key intelligent indicators, and develop analytical models for computing the system intelligence score of smart building system in the intelligent building. The integrated building management system (IBMS) was used as an illustrative example to present a framework. The models presented in this study applied the system intelligence theory, and the conceptual analytical framework. A total of 16 key intelligent indicators were first identified from a general survey. Then, two multi-criteria decision making (MCDM) approaches, the analytic hierarchy process (AHP) and analytic network process (ANP), were employed to develop the system intelligence analytical models. Top intelligence indicators of IBMS include: self-diagnostic of operation deviations; adaptive limiting control algorithm; and, year-round time schedule performance. The developed conceptual framework was then transformed to the practical model. The effectiveness of the practical model was evaluated by means of expert validation. The main contribution of this research is to promote understanding of the intelligent indicators, and to set the foundation for a systemic framework that provide developers and building stakeholders a consolidated inclusive tool for the system intelligence evaluation of the proposed components design configurations.
Resumo:
This year marks the completion of data collection for year three (Wave 3) of the CAUSEE study. This report uses data from the first three years and focuses on the process of learning and adaptation in the business creation process. Most start-ups need to change their business model, their product, their marketing plan, their market or something else about the business to be successful. PayPal changed their product at least five times, moving from handheld security, to enterprise apps, to consumer apps, to a digital wallet, to payments between handhelds before finally stumbling on the model that made the a multi-billion dollar company revolving around email-based payments. PayPal is not alone and anecdotes abounds of start-ups changing direction: Sysmantec started as an artificial intelligence company, Apple started selling plans to build computers and Microsoft tried to peddle compilers before licensing an operating system out of New Mexico. To what extent do Australian new ventures change and adapt as their ideas and business develop? As a longitudinal study, CAUSEE was designed specifically to observe development in the venture creation process. In this research briefing paper, we compare development over time of randomly sampled Nascent Firms (NF) and Young Firms(YF), concentrating on the surviving cases. We also compare NFs with YFs at each yearly interval. The 'high potential' over sample is not used in this report.
Resumo:
This paper proposes a technique that supports process participants in making risk-informed decisions, with the aim to reduce the process risks. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we prompt the participant with the expected risk that a given fault will occur given the particular input. These risks are predicted by traversing decision trees generated from the logs of past process executions and considering process data, involved resources, task durations and contextual information like task frequencies. The approach has been implemented in the YAWL system and its effectiveness evaluated. The results show that the process instances executed in the tests complete with substantially fewer faults and with lower fault severities, when taking into account the recommendations provided by our technique.
Resumo:
A pressing cost issue facing construction is the procurement of off-site pre-manufactured assemblies. In order to encourage Australian adoption of off-site manufacture (OSM), a new approach to underlying processes is required. The advent of object oriented digital models for construction design assumes intelligent use of data. However, the construction production system relies on traditional methods and data sources and is expected to benefit from the application of well-established business process management techniques. The integration of the old and new data sources allows for the development of business process models which, by capturing typical construction processes involving OSM, provides insights into such processes. This integrative approach is the foundation of research into the use of OSM to increase construction productivity in Australia. The purpose of this study is to develop business process models capturing the procurement, resources and information flow of construction projects. For each stage of the construction value chain, a number of sub-processes are identified. Business Process Modelling Notation (BPMN), a mainstream business process modelling standard, is used to create base-line generic construction process models. These models identify OSM decision-making points that could provide cost reductions in procurement workflow and management systems. This paper reports on phase one of an on-going research aiming to develop a proto-type workflow application that can provide semi-automated support to construction processes involving OSM and assist in decision-making in the adoption of OSM thus contributing to a sustainable built environment.
Resumo:
To effectively manage the challenges being faced by construction organisations in a fast changing business environment, many organisations are attempting to integrate knowledge management (KM) into their business operations. KM activities interact with each other and form a process which receives input from its internal business environment and produces outputs that should be justified by its business performance. This paper aims to provide further understanding on the dynamic nature of the KM process. Through a combination of path analysis and system dynamic simulation, this study found that: 1) an improved business performance enables active KM activities and provide feedback and guidance for formulating learning-based policies; and 2) effective human resource recruitment policies can enlarge the pool of individual knowledge, which lead to a more conducive internal business environment, as well as a higher KM activity level. Consequently, the desired business performance level can be reached within a shorter time frame.